Applying variational principles to that metric describes a black hole

physx_420
Messages
32
Reaction score
0
ds^{2} = -c^{2}(1 - \frac{2Gm}{c^{2}r})dt^{2} + (1 - \frac{2Gm}{c^{2}r})^{-1} dr^{2} + r^{2}d\Omega^{2}

This equation was posted on a different website and the O.P said:"Applying variational principles to that metric describes a black hole!"

I was wondering if anyone could explain it a little better. Also, to anyone knows who Miguel Alcubierre is (the guy that created an equation for a hypothetical warp-drive); the above equation shows some similarities to his:

ds^{2} = -dt^{2} + (dx - v_{s}f(r_{s}dt)^{2} + dy^{2} + dz^{2}

Does this have any implications, be they big or small? Anyone have any inputs on this?
 
Physics news on Phys.org
in M. Alcubierre's equation the "s" in the superscript of "v and r" are supposed to be subscripts, I just couldn't get them to work. btw
 
physx_420 said:
This equation was posted on a different website and the O.P said:"Applying variational principles to that metric describes a black hole!"

Unless I'm missing something, you can cut the part about "Applying variational principles to..." The correct statement would simply be: "[T]hat metric describes a black hole!" This is simply the standard form of the Schwarzschild metric, as far as I can see.
 
The first metric you show is the Scwarzschild exterior of a radially symmetric source with a singularty at r=0 and a horizon at r=2GM/c^2.

Look up 'Scwarzschild metric' on Wiki.

[Ben - snap]
 
bcrowell said:
Unless I'm missing something, you can cut the part about "Applying variational principles to..." The correct statement would simply be: "[T]hat metric describes a black hole!" This is simply the standard form of the Schwarzschild metric, as far as I can see.

I think we should acknowledge that the standard Schwarzschild metric can also represent the vacuum region outside a regular non-rotating uncharged non-singular massive body that is not a black hole.
 
Good point, kev.

Lut, what does "[Ben - snap]" mean?
 
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top