Applying W=F*s for variable force

AI Thread Summary
The discussion centers on calculating the resistance force (P) acting on a car with a mass of 2000 kg as it accelerates from 4 m/s to 5.5 m/s over a distance of 60 m, with the engine doing 30,000 J of work. Two methods to find P yield the same result of 262.5 N, but one method is criticized for assuming a constant driving force, which is deemed incorrect. Despite this criticism, it is argued that the SUVAT equation used is effectively a form of energy conservation and does not require constant acceleration. The cleanest approach is suggested to be using energy conservation principles rather than relying on SUVAT equations, emphasizing the need to define average force and acceleration correctly. Overall, the discussion highlights the nuances of applying physics principles to variable forces in motion.
UnknownGuy
Messages
7
Reaction score
0

Homework Statement


A car of mass 2000kg moves along a horizontal road against a constant resistance of manitude (P)N. The total work done by the engine in increasing its speed from 4ms^-1 to 5.5ms^-1 while it moves a distance of 60m is 30000J. Find P.

Homework Equations


ΔEk+WP=WE

The Attempt at a Solution


Straightforward question. The correct solution is as follows:
ΔEk+WP=WE

1/2(2000)(5.5^2-4.0^2)+60P=30000
P=262.5J

However, another solution was proposed:

The work done by the engine is 30000J and the distance it moved was 60m so the average force it exerted was 30000/60=500N

500-P=ma
finding a using v^2=u^2+2as, and then multiplying it by 2000 (m) gives ma=237.5
P=262.5N

This alternative solution gives the same answer. However, a classmate pointed out that it is incorrect because he said it assumed a constant driving force, which is a wrong assumption. I think that dividing the total work done (30000J) by the total distance moved will give the AVERAGE value of this varying driving force and the value of a is the is the AVERAGE value of this varying acceleration. Is there a flaw in this method? If so, what is it?

Thanks in advance
 
Physics news on Phys.org
UnknownGuy said:
it is incorrect because he said it assumed a constant driving force,
That is a valid criticism of the method, but it turns out not to matter in this case.
Indeed, v2=u2+2as is one of the SUVAT equations, and as a set those are only supposed to be for constant acceleration, i.e. the same assumption. However, that particular SUVAT equation is just energy conservation with mass canceled out, and so does not depend on constant acceleration.
The cleanest method would therefore be to use energy conservation rather than SUVAT.
 
Your force balance equation is $$F-P=m\frac{dv}{dt}$$. If we multiply both sides of this equation by ##\frac{ds}{dt}=v##, we obtain:
$$F\frac{ds}{dt}-P\frac{ds}{dt}=mv\frac{dv}{dt}=\frac{m}{2}\frac{dv^2}{dt}$$If we next integrate this equation between 0 and t, we obtain:$$\int_0^s{Fds}-Ps=m\frac{v^2(t)-v^2(0)}{2}$$Dividing both sides of this equation by s yields:$$\frac{1}{s}\left[\int_0^s{Fds}\right]-P=m\frac{v^2(t)-v^2(0)}{2s}$$If we define the average force as $$\bar{F}=\frac{1}{s}\left[\int_0^s{Fds}\right]$$and the average acceleration as $$\bar{a}=\frac{v^2(t)-v^2(0)}{2s}$$we obtain:$$\bar{F}-P=m\bar{a}$$But this interpretation depends strictly on defining the average force and the average acceleration in this very specific way.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top