Approximate Location On Number Line

  • Context: MHB 
  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Approximate Line
Click For Summary
SUMMARY

The discussion focuses on approximating the irrational number \(\sqrt{\frac{3-\sqrt{5}}{2}}\) on a number line without a calculator. The participants demonstrate a method involving squaring the expression and analyzing the resulting polynomial \(f(x) = 2x^4 - 10x^2 + 11\) to identify the intervals containing the roots. Through iterative testing of values, they establish that the approximation lies between 1.25 and 1.3, confirming the accuracy of their calculations.

PREREQUISITES
  • Understanding of irrational numbers and their properties
  • Familiarity with polynomial equations and root-finding techniques
  • Basic knowledge of square roots and their approximations
  • Experience with interval testing for numerical approximations
NEXT STEPS
  • Study methods for finding roots of polynomials, such as the Newton-Raphson method
  • Learn about numerical approximation techniques, including bisection and secant methods
  • Explore the properties of irrational numbers and their significance in mathematics
  • Investigate the use of calculators and software for verifying mathematical approximations
USEFUL FOR

Mathematicians, educators, students in advanced mathematics, and anyone interested in numerical methods for approximating irrational numbers.

mathdad
Messages
1,280
Reaction score
0
Show the approximate location of the irrational number
[(3 - sqrt{5})/2]^(1/2) on a number line without a calculator. Then use a calculator to confirm your approximation.

I can find the approximate location using a calculator. How is this done without a calculator?
 
Mathematics news on Phys.org
We could start by writing:

$$x=\sqrt{\frac{5-\sqrt{3}}{2}}$$

We know we will only be interested in positive values.

Square:

$$x^2=\frac{5-\sqrt{3}}{2}$$

$$2x^2=5-\sqrt{3}$$

$$5-2x^2=\sqrt{3}$$

This tells us we are interested in the smaller of any positive roots, when we square again:

$$25-20x^2+4x^4=3$$

Standard form:

$$f(x)=2x^4-10x^2+11=0$$

We find:

$$f(1)=3$$

$$f(2)=3$$

We should suspect that there are two roots between 1 and 2, and let's cut in between and see if we get a negative value...

$$f\left(\frac{3}{2}\right)=-11/8$$

Yes, it's negative, so the root we want must be in between.

So, we know:

$$1<x<\frac{3}{2}$$

$$f\left(\frac{5}{4}\right)=33/128$$

Now we know:

$$\frac{5}{4}<x<\frac{3}{2}$$

$$f\left(\frac{13}{10}\right)=-\frac{939}{5000}$$

Thus:

$$\frac{5}{4}<x<\frac{13}{10}$$

We could continue to get whatever desired accuracy we want, but at this point we know $1.25<x<1.3$, which is a reasonable approximation. :D
 
Note that $\sqrt{\frac{3-\sqrt5}{2}}=\left|\frac{1-\sqrt5}{2}\right|$
 
greg1313 said:
Note that $\sqrt{\frac{3-\sqrt5}{2}}=\left|\frac{1-\sqrt5}{2}\right|$

Yeah, I messed up the value we want by interchanging the 3 and the 5...I hate when that happens. :D

That would simply things greatly. (Yes)

$$x=\sqrt{\frac{3-\sqrt5}{2}}=\sqrt{\frac{6-2\sqrt5}{4}}=\frac{\sqrt{1-2\sqrt{5}+5}}{2}=\frac{\sqrt{(\sqrt{5}-1)^2}}{2}=\frac{\sqrt{5}-1}{2}$$

$$2<\sqrt{5}<3$$

$$1<\sqrt{5}-1<2$$

$$\frac{1}{2}<\frac{\sqrt{5}-1}{2}<1$$

Begin with a narrower interval containing $\sqrt{5}$, and you'll end up with a better approximation for the requested value. :D
 
MarkFL said:
We could start by writing:

$$x=\sqrt{\frac{5-\sqrt{3}}{2}}$$

We know we will only be interested in positive values.

Square:

$$x^2=\frac{5-\sqrt{3}}{2}$$

$$2x^2=5-\sqrt{3}$$

$$5-2x^2=\sqrt{3}$$

This tells us we are interested in the smaller of any positive roots, when we square again:

$$25-20x^2+4x^4=3$$

Standard form:

$$f(x)=2x^4-10x^2+11=0$$

We find:

$$f(1)=3$$

$$f(2)=3$$

We should suspect that there are two roots between 1 and 2, and let's cut in between and see if we get a negative value...

$$f\left(\frac{3}{2}\right)=-11/8$$

Yes, it's negative, so the root we want must be in between.

So, we know:

$$1<x<\frac{3}{2}$$

$$f\left(\frac{5}{4}\right)=33/128$$

Now we know:

$$\frac{5}{4}<x<\frac{3}{2}$$

$$f\left(\frac{13}{10}\right)=-\frac{939}{5000}$$

Thus:

$$\frac{5}{4}<x<\frac{13}{10}$$

We could continue to get whatever desired accuracy we want, but at this point we know $1.25<x<1.3$, which is a reasonable approximation. :D

What a great reply! You are great!

- - - Updated - - -

MarkFL said:
Yeah, I messed up the value we want by interchanging the 3 and the 5...I hate when that happens. :D

That would simply things greatly. (Yes)

$$x=\sqrt{\frac{3-\sqrt5}{2}}=\sqrt{\frac{6-2\sqrt5}{4}}=\frac{\sqrt{1-2\sqrt{5}+5}}{2}=\frac{\sqrt{(\sqrt{5}-1)^2}}{2}=\frac{\sqrt{5}-1}{2}$$

$$2<\sqrt{5}<3$$

$$1<\sqrt{5}-1<2$$

$$\frac{1}{2}<\frac{\sqrt{5}-1}{2}<1$$

Begin with a narrower interval containing $\sqrt{5}$, and you'll end up with a better approximation for the requested value. :D

Another great reply. You are awesome!
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K