Telemachus
- 820
- 30
Hi. Well, I have a problem with this one. It asks me to approximate \ln(0.7) using MacLaurin polynomial of fourth degree. And estimate the error.
So I used:
f(x)=\ln(x+1) f'(x)=\displaystyle\frac{1}{1+x} f''(x)=\displaystyle\frac{-1}{(1+x)^2} f'''(x)=\displaystyle\frac{2}{(1+x)^3} f^4(x)=\displaystyle\frac{-6}{(1+x)^4} f^5(x)=\displaystyle\frac{24}{(1+x)^5}
And the MacLaurin polynomial I got:
P_4(x)=x-\displaystyle\frac{x^2}{2}+\displaystyle\frac{x^3}{3}-\displaystyle\frac{x^4}{4}
So then
P_4(-0.3)=-0.3-\displaystyle\frac{0.3^2}{2}-\displaystyle\frac{0.3^3}{3}-\displaystyle\frac{0.3^4}{4}=-0.356025
Here is the problem, when calculating the error I got:
R_5(-0.3)=\displaystyle\frac{-0.3^5}{5(1+\alpha)^5}
Where -0.3<\alpha<0
So if I use \alpha=0 I should get an upper boundary for the error, but \displaystyle\frac{-03^5}{5}{\leq{\epsilon}\Rightarrow{-0.000486{\leq{\epsilon}}
But with wolframalpha: http://www.wolframalpha.com/input/?i=ln(0.7)+0.356025
So the error is wrong, but I can't find where is my mistake. It should give something like 0.0006 where I got 0.0004.
Bye there.
So I used:
f(x)=\ln(x+1) f'(x)=\displaystyle\frac{1}{1+x} f''(x)=\displaystyle\frac{-1}{(1+x)^2} f'''(x)=\displaystyle\frac{2}{(1+x)^3} f^4(x)=\displaystyle\frac{-6}{(1+x)^4} f^5(x)=\displaystyle\frac{24}{(1+x)^5}
And the MacLaurin polynomial I got:
P_4(x)=x-\displaystyle\frac{x^2}{2}+\displaystyle\frac{x^3}{3}-\displaystyle\frac{x^4}{4}
So then
P_4(-0.3)=-0.3-\displaystyle\frac{0.3^2}{2}-\displaystyle\frac{0.3^3}{3}-\displaystyle\frac{0.3^4}{4}=-0.356025
Here is the problem, when calculating the error I got:
R_5(-0.3)=\displaystyle\frac{-0.3^5}{5(1+\alpha)^5}
Where -0.3<\alpha<0
So if I use \alpha=0 I should get an upper boundary for the error, but \displaystyle\frac{-03^5}{5}{\leq{\epsilon}\Rightarrow{-0.000486{\leq{\epsilon}}
But with wolframalpha: http://www.wolframalpha.com/input/?i=ln(0.7)+0.356025
So the error is wrong, but I can't find where is my mistake. It should give something like 0.0006 where I got 0.0004.
Bye there.
Last edited: