John Creighto
- 487
- 2
I tried posting this to my blog but the preview function wasn't rendering the formula's correctly and once I posted it I couldn't edit it.
https://www.physicsforums.com/blog.php?b=1152
Therefor I'll post it here instead.
For simplicity let's consider a very simple ODE.
\dot{x_1}=a x_1^2
We can approximate this first order system with a second order ODE as follows:
<br /> \left[ \begin{array}{c}<br /> \dot{x_1} \\<br /> \dot{x_2} \end{array} \right]<br /> =<br /> \left[ \begin{array}{ccc}<br /> 0 & 1 \\<br /> 0 & <br /> \frac{d f(x_1)}{d x_1}<br /> \end{array} \right]<br /> <br /> \left[ \begin{array}{c}<br /> x_1 \\<br /> x_2 \end{array} \right]<br />
Where
<br /> x_2=\frac{dx_1}{dt}<br />
Or in the simple case mentioned above we have:
<br /> \left[ \begin{array}{c}<br /> \dot{x_1} \\<br /> \dot{x_2} \end{array} \right]<br /> =<br /> \left[ \begin{array}{ccc}<br /> 0 & 1 \\<br /> 0 & 2x_1(t_o) \end{array} \right]<br /> <br /> \left[ \begin{array}{c}<br /> x_1 \\<br /> x_2 \end{array} \right]<br />
Using the matrix exponential the solution to the linear approximation of this stem as follows:
<br /> \left[ \begin{array}{c}<br /> x(t) \\<br /> \dot{x}(t) \end{array} \right]<br /> =<br /> exp \left( \left[ \begin{array}{ccc}<br /> 0 & 1 \\<br /> 0 & <br /> 2x_1(t_o) \end{array} \right] (t-t_o) \right)<br /> <br /> \left[ \begin{array}{c}<br /> x(t_o)) \\<br /> \dot{x}(t_o) \end{array} \right]<br />
Where:
\dot{x}(t_o)=ax(t_o)^2
Keep in mind the choice of using a second order approximation was somewhat arbitrary. We could of equally well, done a third order approximation as follows:
<br /> \left[ \begin{array}{c}<br /> \dot{x_1} \\<br /> \dot{x_2} \\<br /> \dot{x_3} \end{array} \right]<br /> =<br /> \left[ \begin{array}{ccc}<br /> 0 & 1 & 0\\<br /> 0 & 0 & 1\\<br /> 0 & 2 a & 2 a x(t_o)<br /> \end{array} \right]<br /> <br /> \left[ \begin{array}{c}<br /> x_1 \\<br /> x_2 \\<br /> x_3 \end{array} \right]<br />
Where
<br /> x_2=\frac{dx_1}{dt}, x_3=\frac{d^2x_1}{dt^2} <br /> <br />
and
\dot{x}(t_o)=ax(t_o)^2
\ddot{x}(t_o)=2 a x(t_o) \dot{x}(t_o)=2a^2x(t_o)^3Which can also be solved using the matrix exponential.
https://www.physicsforums.com/blog.php?b=1152
Therefor I'll post it here instead.
For simplicity let's consider a very simple ODE.
\dot{x_1}=a x_1^2
We can approximate this first order system with a second order ODE as follows:
<br /> \left[ \begin{array}{c}<br /> \dot{x_1} \\<br /> \dot{x_2} \end{array} \right]<br /> =<br /> \left[ \begin{array}{ccc}<br /> 0 & 1 \\<br /> 0 & <br /> \frac{d f(x_1)}{d x_1}<br /> \end{array} \right]<br /> <br /> \left[ \begin{array}{c}<br /> x_1 \\<br /> x_2 \end{array} \right]<br />
Where
<br /> x_2=\frac{dx_1}{dt}<br />
Or in the simple case mentioned above we have:
<br /> \left[ \begin{array}{c}<br /> \dot{x_1} \\<br /> \dot{x_2} \end{array} \right]<br /> =<br /> \left[ \begin{array}{ccc}<br /> 0 & 1 \\<br /> 0 & 2x_1(t_o) \end{array} \right]<br /> <br /> \left[ \begin{array}{c}<br /> x_1 \\<br /> x_2 \end{array} \right]<br />
Using the matrix exponential the solution to the linear approximation of this stem as follows:
<br /> \left[ \begin{array}{c}<br /> x(t) \\<br /> \dot{x}(t) \end{array} \right]<br /> =<br /> exp \left( \left[ \begin{array}{ccc}<br /> 0 & 1 \\<br /> 0 & <br /> 2x_1(t_o) \end{array} \right] (t-t_o) \right)<br /> <br /> \left[ \begin{array}{c}<br /> x(t_o)) \\<br /> \dot{x}(t_o) \end{array} \right]<br />
Where:
\dot{x}(t_o)=ax(t_o)^2
Keep in mind the choice of using a second order approximation was somewhat arbitrary. We could of equally well, done a third order approximation as follows:
<br /> \left[ \begin{array}{c}<br /> \dot{x_1} \\<br /> \dot{x_2} \\<br /> \dot{x_3} \end{array} \right]<br /> =<br /> \left[ \begin{array}{ccc}<br /> 0 & 1 & 0\\<br /> 0 & 0 & 1\\<br /> 0 & 2 a & 2 a x(t_o)<br /> \end{array} \right]<br /> <br /> \left[ \begin{array}{c}<br /> x_1 \\<br /> x_2 \\<br /> x_3 \end{array} \right]<br />
Where
<br /> x_2=\frac{dx_1}{dt}, x_3=\frac{d^2x_1}{dt^2} <br /> <br />
and
\dot{x}(t_o)=ax(t_o)^2
\ddot{x}(t_o)=2 a x(t_o) \dot{x}(t_o)=2a^2x(t_o)^3Which can also be solved using the matrix exponential.
Last edited by a moderator: