jostpuur
- 2,112
- 19
Let X be a measure space, and f:X\times X\to [0,\infty[ some integrable function. Is the following inequality always true,
<br /> \int\limits_{X} dx\;f(x,x)\; \leq\; \sup_{x_1\in X} \int\limits_{X} dx_2\; f(x_1,x_2) ?<br />
<br /> \int\limits_{X} dx\;f(x,x)\; \leq\; \sup_{x_1\in X} \int\limits_{X} dx_2\; f(x_1,x_2) ?<br />
Last edited: