Are Irreducible Polynomials of Degree 4 Always Reducible?

  • Thread starter Thread starter letmeknow
  • Start date Start date
  • Tags Tags
    Degree
letmeknow
Messages
26
Reaction score
0
Proposition. A polynomial of degree 2 or 3 over a field F is reducible iff it has a root in F.

Tell me if I'm on the right track... I see that x^4 + 3x^2 + 2 is reducible (x^2+1)(x^2+2) but has no roots in Q.

This serves as a counterexample to the proposition if states for polynomial up to degree 4?
 
Physics news on Phys.org
Yes, that serves as a counter example for polynomials of degree 4. And that's why your proposition only says "degree 2 or 3".

If a polynomial of degree three is "reducible", then it must be "reduced" to two linear factors. And those two linear factors will give roots. If a polynomial of degree three is "reducible" then it is "reduced" to either a product of three linear factors or a product of a linear factor and an irreducible quadratic. In either case, you have at least one linear factor that gives a root.
 
Last edited by a moderator:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top