Are set theory functions sets too?

The UPC P
Messages
9
Reaction score
0
I read somewhere that mathematical functions can be implemented as sets by making a set of ordered tuples <a,b> where a is a member of A and b is a member of B. That should create a function that goes from the domain A to the range B.

But set theory has functions too, could they be sets too?

For example the Power function would just be the set witht eh tuples <{},{{}}> and <{{}},{{}{{}}}> and so on. And the union and the pair function could be made into sets as well.

So what I want to ask is can all functions in set theory be defined as sets themselves?
 
Physics news on Phys.org
The UPC P said:
So what I want to ask is can all functions in set theory be defined as sets themselves?

Yes, if the domain of the function is a set. The power set function has as domain the class of all sets, this is not a set due to Russel's paradox. So the power set function can not be described as a set. Rather, it must be described as a logical formula.
 
OK thanks!
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top