artis
- 1,479
- 976
Well there are complaints of neurological side effects from people but the jury is still out on what could cause them.Chestermiller said:Is there any indication that Covid vaccine makes Parkinson's symptoms progress more rapidly?
As for real Covid, it seems there is a continual influx of evidence that points to the spike protein being a neurotoxin of wide capabilities.
I cannot find all the studies in this regard which I have overlooked as I don't save them, but even a quick search reveals plenty.
Here University of Washington talked about this back at December last year
https://newsroom.uw.edu/resource/covid-19-spike-proteins-may-cause-neurological-issues
https://inflammregen.biomedcentral.com/articles/10.1186/s41232-021-00165-8
The study also compares different known viruses like MERS and others and their ability to induce neurological damage, it seems from what they say that out of these examples Covid is among the worst for neurology because of the types of cells that it can infect, namely the S protein can attach to the ACE2 receptor expressing cells and among those are neural cells.Several studies have been reported in which pseudovirus or SARS-CoV-2 was added to brain organoids prepared from iPSCs to examine whether infection was established. When SARS-CoV-2 is added to neural progenitor cells and brain organoids prepared from human iPSCs in vitro, infection is established, and viral proliferation and neuronal cell death are induced. In this system, antibodies against ACE2 or CSF (containing IgG antibodies specific to S protein) from COVID-19 patients prevent neural infection with SARS-CoV-2 [32], indicating that ACE2 acts as a receptor for SARS-CoV-2 in neural cells.
HCoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-OC43 are the causative viruses of the so-called winter cold. There are fewer studies on neural disorders caused by these viruses than by SARS-CoV-1 or SARS-CoV-2. This is because, when the existence of these viruses was confirmed, they had already become established as the causative virus of the winter cold in human beings, and they were not paid much attention as research subjects.
Nevertheless, among these four viruses, HCoV-229E [15] and HCoV-OC43 have been reported to cause neural disorders. HCoV-229E and HCoV-OC43 use aminopeptidase N [16] and 9-O-acetylated sialic acids [17] as receptors for adsorption. It has been reported that HCoV-OC43 may cause multiple sclerosis [15] and encephalitis [18, 19], and experiments have been conducted to infect neural cells in vitro [20]. In addition, axonal transport is cited as a possible route of infection of the nervous system for HCoV-OC43 [21].
MERS-CoV is a dromedary-hosted virus that was identified in Saudi Arabia in 2012. Even now, there are sporadic cases of MERS. MERS is a very serious and fatal disease with a case fatality rate of 35% [13, 22]. However, it has also been reported that 0.15% of Saudi Arabians have anti-MERS-CoV antibodies [23]; taking these potentially infected people into account, the case fatality rate can be estimated to be approximately 2%.
Dipeptidyl peptidase-4 (DPP4) has been identified as a receptor for MERS-CoV infection [24]; however, few reports have verified whether DPP4 is expressed in neural cells. Although neural disorders due to MERS-CoV infection have been reported [25, 26], the low number of reports may be because DPP4 expression is not detectable in the nervous system. Thus, MARS-related neural disorders may be limited to those caused by systemic inflammation and angiopathy.
SARS-CoV-1 was identified in 2003 and causes SARS [14], which is a serious disease with a case fatality rate of up to 10–20%. There is a case report that SARS causes neural disorders [27], and there is also a report that SARS-CoV-1 caused neural cell death in an experiment using mice [28]. The receptor for SARS-CoV-1 is angiotensin-converting enzyme 2 (ACE2), which is the same as that for SARS-CoV-2 [29]. As described later, there are some reports showing that ACE2 is expressed in neural cells, and SARS-CoV-1 may thus directly infect neural cells and cause neural disorders.
An interesting study all in all.
Here is a study from nature
https://www.nature.com/articles/s41531-020-00123-0
But then again the study seems to say that there isn't a clear sign, maybe newer studies show different outcomes I'm not sure, this one is from August of 2020Because SARS-CoV-2 proteins can interact with host proteins involved in pathways that are altered during aging, including potential mitochondrial dysfunction, loss of proteostasis, autophagy dysfunction, inflammation, and endoplasmic reticulum stress, it is possible that SARS-CoV-2 infection may prompt protein misfolding and aggregation (Fig. 1)103,104,105. Of particular relevance for PD, recent studies have suggested that the aggregation-prone protein, alpha-synuclein, plays a role in the innate immune response to viral infections
Currently there is no robust evidence that having PD imparts an increased risk for susceptibility to COVID-19 or that COVID-19 confers a greater risk of PD, although, as noted above, there are reported cases of worsening of PD symptoms in infected patients, particularly in older frail patients on advanced therapies and one case report of development of an acute hypokinetic syndrome with hyposmia post COVID-19.