Are There Closed Form Versions for Cubic Polynomials with 3 or 4 Points?

  • Thread starter Thread starter hotvette
  • Start date Start date
  • Tags Tags
    Cubic Forms
hotvette
Homework Helper
Messages
1,001
Reaction score
11
Here's an interesting question. I'm aware of closed forms of cubic polynomials that go through 1 or 2 specific (x,y) points. Are there closed form versions for 3 or 4 points?

1 pt: y = a(x-x_0)^3 + b(x-x_0)^2 + c(x-x_0) + y_0

2 pt: y = a(x-x_0)^2(x-x_1)\ +\ b(x-x_0)(x-x_1)^2 \ +\ \frac{y_0(x-x_1)^3}{(x_0-x_1)^3} \ +\ \frac{y_1(x-x_0)^3}{(x_1-x_0)^3}

3 pt: y = \ ?

4 pt: y = \ ?

I don't think there are.
 
Last edited:
Mathematics news on Phys.org
Given any 4 points in the plane, there exist a unique cubic polynomial whose graph goes through those 4 points. Given 1, 2, or 3 points, there exist an infinite number of different cubics passing through those points. In your first example, yes, different choices for a, b, c give different cubics through (x_0,y_0). In your second example, different choices for a and b give different cubics through (x_0,y_0) and (x_1,y_1). (I think you don't really need the cubes in the last two fractions.)

For 3 points, what's wrong with
y= a(x-x_0)(x-x_1)(x-x_2)+\frac{y_0(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}+ \frac{y_1(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}+ \frac{y_2(x-x_0)(x-x_1)}{(x_2-x_1)(x_2-x_0)}

for 4 points, the unique cubic is given by the LaGrange polynomial
y= \frac{y_0(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}+\frac{y_1(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}+\frac{y_2(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}+\frac{y_3(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}
 
Thanks! I should have known the 4-pt. verison. Lagrange. Of course. The 3-pt version I haven't seen before. And you are right, don't need cubes in the last two fractions for the 2-pt version. Thanks.
 
Last edited:
For the 3 pt version, I just extended what you did with 1 and 2 pts! The fractions are, of course, the Lagrange formula for a quadratic through the three points and the first term is a cubic that is 0 at each given point.
 
Looking at it all now, it makes perfect logical sense. Thanks.
 
Actually, the same 4-pt form can be used for all situations (0 fixed points - 4 fixed points). See attachment.
.
 

Attachments

Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top