Are Thermal States Always Mixed States?

camipol89
Messages
7
Reaction score
0
Hey guys,
I was reading about thermal states and now I have a doubt: is a thermal state always a mixed state with density matrix ρ=exp(-βH)/Tr(exp(-βH)), or is there also a pure thermal state?
Thank you
 
Physics news on Phys.org
Think about what happens for T=1/\beta \rightarrow 0!
 
ρ→1 and we get a pure state, is that correct?
So there are pure thermal state, they are just thermal state at an (ideal) zero temperature?
If I am right, do such pure thermal states exist in nature?
Thanks a lot for your help!
 
As long as the ground state is not degenerate, the zero temperature limit does give a pure state. However, one can never really reach zero temperature by cooling in the physical world. On the other hand, there are other ways to prepare a nearly isolated pure state.

In fact, there is a sense in which pure states may display thermal properties. Imagine a closed system begun in some pure initial state which evolves unitarily. If the initial state is, on average, highly excited (e.g. has a finite energy density above the ground state), then one would expect on general grounds that the system should "thermalize" in some sense. Yet the state of the whole system must remain pure. However, as long as we look at small pieces of the whole system, we may imagine that the rest of the system acts as an effective bath, and the state of the small subsystem may look thermal.
 
A pure state is by definition described by a statistical operator that is a projection operator
\hat{\rho}=|\psi \rangle \langle \psi|
with a normalized state vector |\psi \rangle, i.e., with
\langle \psi|\psi \rangle.
Indeed if the ground state is not degenerate, then
\lim_{T \rightarrow 0} \hat{\rho}_{\text{can}} = |\Omega \rangle \langle \Omega|,
where |\Omega \rangle is the energy-eigenvector for the lowest energy-eigenvalue, and this is uniquely defined (up to a phase, which cancels in the statistical operator).

To stress it again: The identity operator generally cannot be a proper statistical operator, because for usual physical systems the state space is a true infinitely-dimensional Hilbert space, and a statistical operator must have trace 1. The identity operator in a proper Hilbert space has no finite trace and thus cannot represent a mixed state.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
16
Views
2K
Replies
35
Views
3K
Replies
6
Views
2K
Replies
3
Views
2K
Replies
2
Views
2K
Replies
17
Views
4K
Back
Top