DODGEVIPER13 said:
Ok so the denominator for (b) should be 23.065.
Sure. So what then are the components of the resulting vector?
I don't understand that. The result of a cross product should be a vector.
Part d contains a cross product followed by a dot product. The result should be a single scalar value.
on 1.2 that is precisley what had me lost. I know that if they are parallel, then one vector must be a multiple of another. If perpendicular the dot product must result in a 0 and with alpha and beta only being tied to two terms. I struggle with how I can make this happen on the Z value for the parallel part.
For the parallel vectors you can write x*A = B, for some scalar value x. Expand that and you'll see three equations. Solve for x (simple!). Use x to find ##\alpha## and ##\beta##.
Show your work; that's not the value I'm seeing.
EDIT: Sorry, I didn't see your attachments. Looking at your work for 1.3, I see that you've done something bizarre to find the vectors defining the triangle: you're multiplying the point components! A vector from point A to point B is given by V
AB = B - A.
For your cross products, the Ux, Uy, Uz stuff should ONLY appear in the top line of the determinant! Ux, Uy, and Uz designate the unit vectors of the vector space (or coordinate system axes). A vector written as: 3Ux + 5Uy -6Uz has Ux component 3, Uy component 5, and Uz component -6. It might also be written as: (3, 5, -6), with the understanding that those are the Ux, Uy, Uz components.