The maximum area that can be enclosed is 800 square feet.

  • Thread starter Thread starter ksle82
  • Start date Start date
  • Tags Tags
    Area Optimization
ksle82
Messages
30
Reaction score
0
Given 80 feet of fencing, what is the maximum area that you can enclose along a wall?

Solution:
L=lenght, W=width, A=area

2L+2W=80 (perimeter) ==> L+W=40 ==> L=40-W

LW=A ==> (40-W)(W)= -W^2+ 40W= A

(dA/dW)=0=-2W+40=0 ==> W=20

W=20, L=20--------------------------------------------------ANSWERS

Is this right? any input would be appreciated.
 
Physics news on Phys.org
I would think only three sides would be fence and the other would be the wall.
 
Yea, he's right only 3 sides.
 
Doh!
here's the updated solutions:

L+2W=80 ==> L=80-2W

A=LW= (80-2W)(W)= 80W-2W^2

(dA/dW)=-4W+80=0 ==> W=20, L=40 ---------------------Answers
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top