PrudensOptimus
- 641
- 0
Any errors? Please pick out and explain, thanks.
\int{}tan^{-1}(x)dx = F(x)
F'(x) = tan^{-1}(x)
\frac{dy}{dx} = tan^{-1}(x)
dy = tan^{-1}(x) dx
tan^{-1}(\frac{dy}{dx}) = tan(x)
\frac{F'(x)}{1+F^{2}(x)} = sec^{2}(x)
F'(x) = sec^{2}(x)[1 + F^{2}(x)]
F(x) = tan(x) + \int{}\frac{sin(x)}{cos^{3}(x)}dx
F(x) = tan(x) + \frac{1}{2cos^{2}(x)} + C
\int{}tan^{-1}(x)dx = F(x)
F'(x) = tan^{-1}(x)
\frac{dy}{dx} = tan^{-1}(x)
dy = tan^{-1}(x) dx
tan^{-1}(\frac{dy}{dx}) = tan(x)
\frac{F'(x)}{1+F^{2}(x)} = sec^{2}(x)
F'(x) = sec^{2}(x)[1 + F^{2}(x)]
F(x) = tan(x) + \int{}\frac{sin(x)}{cos^{3}(x)}dx
F(x) = tan(x) + \frac{1}{2cos^{2}(x)} + C