Astrophysics - Special Relativity

Sleeker
Messages
7
Reaction score
0

Homework Statement



2) If a relativistic rocket has a proper acceleration alpha that
increases with proper time tau according to:
alpha(tau) = 2/[Cosine(tau)^2 - Sine(tau)^2]
find its motion, r(t), from the point of view of a control tower
for whom the rocket is motionless at r(0) = 0.
(Hint: alpha(tau) here is the derivative with respect to tau of
ln[tan(tau + pi/4)] .)



Homework Equations



1. R=Rapidity
2. tanh(R)=β
3. d/dτ(R)=α


The Attempt at a Solution



Using formula #3 and the hint, I have R. Using formula #2 and my TI-89, I got:

(1-β)/2 = cos[t*(sqrt(1-β^2)+pi/4]^2

Using a couple of trig formulas, I have

β-1 = sin(2*t*sqrt(1-β^2))

I'm stuck there. As far as I know, there is no way to solve for β, and thus for the velocity 'v', which means I can't integrate to find r(t).
 
Physics news on Phys.org
Try using

\tanh x = \frac{e^x-e^{-x}}{e^x+e^{-x}}.
 
vela said:
Try using

\tanh x = \frac{e^x-e^{-x}}{e^x+e^{-x}}.

I wind up at the same spot.
 
Do it by hand, and show your work here.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top