At what temperature do quantum effects become significant for a gas

Signifier
Messages
75
Reaction score
0
Hi, I was wondering how to calculate a rough estimate of the temperature at which quantum effects begin to become important for a gas of interacting particles. Let's say the particles interact via a spherically symmetric potential with an equilibrium distance R and a well-depth E (such as the Lennard-Jones potential). Can I use the mass of the particles and the interaction energy parameters (R & E) to estimate a temperature around which quantum effects become important?

By quantum effects becoming important, I mean they begin to significantly affect thermodynamic properties of the gas, such as the magnitude of the second virial coefficient B(T).

I can calculate things like the thermal de Broglie wavelength, the de Boer parameter, etc., but I was wondering if there was some straightforward way to estimate this. Presumably for rare gas atoms with weaker interactions (Helium) the "quantum temperature" should be larger than that for rare gas atoms with strong interactions (eg, argon).

Thank you - I hope I am clear!
 
Physics news on Phys.org
The derivation is not exactly trivial, and it depends on whether your gas consists of bosons or fermions (you get the same general formula but with different constants in front). Interparticle interactions do not really matter too much. You can find it in most statistical physics textbooks. The critical temperature is on the order of

\frac{\hbar^2}{2m} n^{2/3},

where n is particle number density. For a typical gas at atmospheric pressure, it's on the order of a few kelvin.
 
Hm... a very interesting result. I have been calculating interaction parameters for the rare gas atoms. Following Pahl, Calvo, Kocˇi, and Schwerdtfeger (Angew. Chem. Int. Ed. 2008, 47, 8207 –8210), I've calculated the de Boer parameter for the different RG atoms, getting for instance 0.027 for Ar and 0.079 for Neon.

I am far from an expert but surely there must be some relationship between well depth, width and position and the temperature at which quantum effects begin to become important? Your result tells me there is no difference between the temp for Ar and the temp for He? But there are definite differences between the interaction energies of these atoms...
 
These quantum effects are present even if the interaction is zero. The dominant effect for fermions, for example, is Pauli exclusion principle. Interactions affect some thermodynamic properties, but I don't think that they significantly change the critical temperature.

Maybe this thread should be moved into the atomic physics subforum. It's a condensed-matter problem. Personally, I'm not an expert on condensed matter.
 
Last edited:
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

Back
Top