Atom Size Visualization Animation

Dual Op Amp
Messages
151
Reaction score
0
Are there any visualization animations of the size of an individual atom, not in respect to the nucleus, just an atom?
I saw an animation where I was zooming into a cell, but is there one for an atom.
www.cellsalive.com That's the cell animation one, click on how big.
 
Last edited by a moderator:
Physics news on Phys.org
Examples of cell and microbe sizes:

Viruses . . . . . . . . . . <= 1 um
Staphlococcus . . . . . . . . 1 um
Bacteria (E. coli) . . . . . . 2 um
Red Blood Cell . . . . . . . 8 um
Elodea epidermal cell . 65 um
Amoeba . . . . . . . . . . 700 um

These are large structures compared to atoms, which have sizes on the order of 1-4 Å, or 0.1 to 0.4 nm, or 1E-4 to 4E-4 microns. ( 1 Å = 10^-8 cm).

Now, the wavelength of visible light is in the range of 4000 (blue) to 7000 (red) Å, or 400 to 700 nm or 0.4 to 0.7 microns. The atoms, the source of photons, are much smaller than the wave length of the photons by at least 3 orders of magnitude. So we cannot 'see' atoms.

And, IIRC, one needs an electron microscope to see viruses and bacteria, because they are smaller that light wave lengths. Electrons can be accelerated to energies such that their wavelengths (de Broglie wavelength) are much smaller than those of visible light.

And nucleons and electrons are even smaller - so we definitely cannot see them either.

The only way we can detect atoms, nucleons, and electrons is by virture of their interactions. The interactions can be modeled, and those models can give us an idea of what a 'structure' might be like. For many purposes, the atom, nucleon or electron is like a point, but since it has mass, we might imagine a sphere with its pointwise symmetry.

Outside the atom, electrons behave like particles or waves. Inside the atom, electrons are thought of as waves, and their 'precise' location is meaningless. Quantum/wave mechanics gives us an idea of 'region of influence' of an electron in an atom. Scattering of electrons and X-rays by atoms gives us some idea of how the atomic structure influences them, but that does not provide an 'image' of the atom.

How might we then determine a size of an atom. Well, in solids, X-ray diffraction can give us an idea of the interatomic spacing. In addition, we can take a collection of atoms and knowing mass and density, which give us volume, and knowing Avogadro's number, we can get a size of an atom of a particular element. Introductory textbooks in chemistry and material science should have discussions on determining atomic size.
 
I read that brownian motion can be observed when molecules of water jostle pollen grains floating in a vessel , how is this possible if atoms are so much smaller than any visible particles?
 
Well, when you have 1,000 atoms hitting you this way, some kinetic energy is created. Now, depending on how many other particles are hitting the pollen on the other side, depends on how many particles are colliding on the other side. For example, a vacuum works, because there are particles colliding on one side, and none on the other. Brownian motion.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top