Averaging, integral of special function

  • Thread starter Thread starter psl86
  • Start date Start date
  • Tags Tags
    Function Integral
psl86
Messages
3
Reaction score
0

Homework Statement



Integrate the right hand side of the state equation to find the average system

\dot{x_1} = x_2
\dot{x_2} = -x_1 + 1 -2u(0.5sat(x_2) + 0.5 - p(t))

Homework Equations



u(s) = 0 for s<0, u(s) = 1 for s>=0
p(t) is periodic with T = 1
f_{avg} =\frac{1}{T}\int_0^Tf(x,t)

The Attempt at a Solution



\dot{x_1} = x_2
\dot{x_2} = -x1 - sat(x_2)
 
Last edited:
Physics news on Phys.org
Im almost 100% certain that this is suppose to end up as

x1_dot = x2
x2_dot = -x1 - sat(x2)

but I can't make the argument..
 
No one in here with a steady averaging-theory brain?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top