A Averaging over the upper sum limit of a discrete function

nikozm
Messages
51
Reaction score
0
Hi,

Let the following function:

X = ∑^{L}_{k=1} f(k)/L, where f(k) is a continuous random function and L is a random discrete number. Both L and f(k) are non negative random variables. Thus, X is the average of f(k) with respect to L.

Is it right to say that X equals (or approximately) to ∑^{E[L]}_{k=1} f(k), where E[L] is the average discrete value of L ?
 
Physics news on Phys.org
Not necessarily. Suppose f is constant for k < E(L) and increasing afterwards. The second sum is fixed, while the first sum would = second sum for L < E(L), but greater for L > E(L).
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top