Ball hitting a hanging rod: Velocity and Energy Loss Analysis

  • Thread starter Thread starter Karol
  • Start date Start date
  • Tags Tags
    Ball Rod
AI Thread Summary
The discussion focuses on analyzing the velocity of a ball that strikes a hanging rod and the associated energy loss during the collision. Key equations include the conservation of angular momentum and kinetic energy of the system, leading to expressions for the ball's velocity and energy loss. Participants identify errors in the calculations, particularly concerning factors of 1/2 and dimensional consistency in the final expressions. The discussion concludes with corrections that clarify the relationship between potential energy and the parameters involved, confirming the accuracy of the revised equations. Overall, the analysis emphasizes the importance of careful dimensional analysis in physics problems.
Karol
Messages
1,380
Reaction score
22

Homework Statement


A rod of length L hangs on a nail. a ball of mass m hits and sticks to it. the rod rotates to angle θ.
What is the velocity of the ball and what's the loss of energy.

Homework Equations


Kinetic energy of a rigid body: ##E=\frac{1}{2}I\omega^2##
Angular momentum: ##I\omega##

The Attempt at a Solution


Location of C.O.M:
$$x_{c.m.}=\frac{mL+M\frac{L}{2}}{m+M}=\frac{L}{m+M}\left( m+\frac{M}{2} \right)$$
The potential energy at the inclined position, the final position:
$$E_f=(m+M)g\cdot y_{c.m.}=(m+M)\frac{L}{m+M}\left( m+\frac{M}{2} \right)g\cos\alpha=Lg\left( m+\frac{M}{2} \right)\cos\alpha$$
Ef equals the kinetic energy after the hit:
$$E_f=\frac{1}{2}I\omega^2\rightarrow Lg\left( m+\frac{M}{2} \right)\cos\alpha=(mL^2+\frac{1}{3}ML^2)\omega^2\Rightarrow \omega^2=\frac{g\left( m+\frac{M}{2} \right)\cos\alpha}{L\left( m+\frac{1}{3}M \right)}$$
Conservation of angular momentum:
$$mvL=I\omega \Rightarrow mvL=\left( mL^2+\frac{1}{3} ML^2 \right) \omega$$
$$\Rightarrow v=\frac{ L\left( m+\frac{1}{3}M \right) \omega }{m}=\sqrt{Lg\left( m+\frac{1}{3}M \right)\left(m+\frac{M}{2} \right) }$$
$$\Delta E=Lg\left( m+\frac{M}{2} \right)\cos\alpha-\frac{1}{2}mv^2=Lg\left( m+\frac{M}{2} \right) \left[ \cos\alpha-\frac{1}{2m}\left( m+\frac{1}{3}M\right) \right]$$
Is it true?
 

Attachments

  • Snap1.jpg
    Snap1.jpg
    2.7 KB · Views: 485
Physics news on Phys.org
What baseline are you taking for the PE? As theta (alpha) increases, does the PE increase or decrease?
 
$$E_f=(m+M)g\cdot y_{c.m.}=(m+M)\frac{L}{m+M}\left( m+\frac{M}{2} \right)g(1-\cos\alpha)=Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha)$$
$$E_f=\frac{1}{2}I\omega^2\rightarrow Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha)=(mL^2+\frac{1}{3}ML^2)\omega^2\Rightarrow \omega^2=\frac{g\left( m+\frac{M}{2} \right)(1-\cos\alpha)}{L\left( m+\frac{1}{3}M \right)}$$
$$v=\frac{ L\left( m+\frac{1}{3}M \right) \omega }{m}=\sqrt{Lg\left( m+\frac{1}{3}M \right)\left(m+\frac{M}{2} \right)(1-\cos\alpha) }$$
$$\Delta E=Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha)-\frac{1}{2}mv^2=Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha) \left[1-\frac{m}{2}\left( m+\frac{M}{3}\right) \right]$$
 
The first two lines look fine.
In the third you seem to have lost a 1/m. (Check the dimensions.)
In the middle expression of the last line you seem to have lost an entire factor, but maybe that was just a transcription error.
The final expression is dimensionally inconsistent (inside the square brackets you have a constant term minus a mass2 term).
 
$$v=\frac{ L\left( m+\frac{1}{3}M \right) \omega }{m}=\frac{1}{m}\sqrt{Lg\left( m+\frac{1}{3}M \right)\left(m+\frac{M}{2} \right)(1-\cos\alpha) }$$
I don't think i missed a factor:
$$\Delta E=E_f-\frac{1}{2}mv^2$$
$$\Delta E=Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha)-\frac{1}{2}mv^2=Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha) \left[1-\frac{1}{2m}\left( m+\frac{M}{3}\right) \right]$$
And the units are correct, at least
 
Karol said:
$$E_f=\frac{1}{2}I\omega^2\rightarrow Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha)=(mL^2+\frac{1}{3}ML^2)\omega^2$$

Haven't you lost an 1/2?
 
$$E_f=\frac{1}{2}I\omega^2\rightarrow Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha)=\frac{1}{2}(mL^2+\frac{1}{3}ML^2)\omega^2\Rightarrow \omega^2=\frac{2g\left( m+\frac{M}{2} \right)(1-\cos\alpha)}{L\left( m+\frac{1}{3}M \right)}$$
And i understand that the rest is good
 
Karol said:
$$E_f=\frac{1}{2}I\omega^2\rightarrow Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha)=\frac{1}{2}(mL^2+\frac{1}{3}ML^2)\omega^2\Rightarrow \omega^2=\frac{2g\left( m+\frac{M}{2} \right)(1-\cos\alpha)}{L\left( m+\frac{1}{3}M \right)}$$
And i understand that the rest is good
With the factor 2, it is correct.
 
Thank you ehild and haruspex (factor of 2...)
 
Back
Top