What is the equation to solve for muzzle speed in a ballistic pendulum problem?

scheng12
Messages
3
Reaction score
0

Homework Statement



During a summer internship with a company, you devised the following method of measuring the muzzle speed of a high-powered rifle, as shown in the figure. You fire a bullet into a rod of mass 5.5 kg and length 150 cm that is free to rotate about the pivot at the top. The bullet, whose mass is 8.55 g, strikes at the center of mass of the rod and remains embedded. You measure the maximum opening angle to be 11.5 degrees. What is the muzzle speed in m/s?

Homework Equations


I know the equation to solve for the muzzle speed for a normal ballistic pendulum is

v0=(M+m)\sqrt{}2gL(1-cos\vartheta)/m

The Attempt at a Solution


When I plug the values in the answer comes out to be false since the bullet hits the rod in the center, instead of at the tip. I also tried to plug in L/2 but that doesn't work either. Any ideas?
 
Physics news on Phys.org
any1?
 
Instead of just applying the formula you might want to consider where the formula comes from.

A simple energy relationship will tell you that your square root is in the wrong place.

L = L(overall)/2 this is correct.
 
where is the square root supposed to be?
 
The square root should be over everything on the right hand side.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top