Bases for Tangent Spaces and Subspaces - McInerney Theorem 3.3.14

  • #1
Math Amateur
Gold Member
1,067
47

Summary:

The thread concerns a basis for a tangent space ...
I am reading Andrew McInerney's book: First Steps in Differential Geometry: Riemannian, Contact, Symplectic ... and I am focused on Chapter 3: Advanced Calculus ... and in particular on Section 3.3: Geometric Sets and Subspaces of ##T_p ( \mathbb{R}^n )## ... ...

I need help with an aspect of the proof of Theorem 3.3.14 ... ...

Theorem 3.3.14 reads as follows:


McInerney - 1 - Theorem 3.3.14 ... ... Page 1 ... .png

McInerney - 2 - Theorem 3.3.14 ... ... Page 2 ... .png





Can someone please explain/demonstrate explicitly why/how ##(e_1)_p, (e_2)_p, \ ... \ ... \ , (e_{n-1} )_p## are the standard basis vectors for ##T_p( S_f )## ...


Help will be much appreciated ... ...

Peter


==================================================================================================================


The above post mentions Theorem 3.3.13 so I am providing text of the theorem together with a relevant definition ... as follows:


McInerney - Defn 3.3.12 & Theorem 3.3.13 ... ... Page 1 ... .png

McInerney - 2 - Defn 3.3.12 & Theorem 3.3.13 ... ... Page 2 ... .png




Hope that helps readers follow the post ...

Peter
 

Answers and Replies

  • #2
14,130
11,400
Try to imagine the case ##n=2##. Then we would have some surface in three dimensional space as the graph of the function, e.g. https://www.wolframalpha.com/input/?i=f(x,y)=-x^2-0.3+xy+5.

The tangent space is then a (hyper-)plane ##H## touching the graph at a certain point ##p##. (It may also intersect the graph elsewhere, but this is irrelevant. Differentiation and tangents are a local phenomenon and we are only interested in what happens around ##p##.) Next which coordinates of ##H## can we choose? We take ##p## as origin of our coordinate system. We will consider the tangent space as a linear space with coordinates in its own, and not an affine space ##p+H## which we get, if we will take the 'outer' coordinates of ##\mathbb{R}^3##. However, we want to stay within ##T_p(f)## and there are only two basis vectors and ##p## is their origin. But which ones to take? From ##p## we can go in any direction. Standard would be, however, to go along the coordinates we differentiated along, that is ##x =x_1## and ##y=x_2##. So the tangent vectors which provide the coordinates along the direction of differentiation are ##(1,0,\frac{\partial f}{\partial {x_1}}) \triangleq (x, \partial_xf) ## and ##(0,1,\frac{\partial f}{\partial {x_2}}) \triangleq (y,\partial_yf)##.

Remember that the tangent vectors are those along any curve ##c## within the graph at the point ##p##. Now we simply have chosen two curves (out of any) in ##x_1## and ##x_2## direction. Two are enough to span ##H##.

The same goes for higher dimensions ##n>2##.
 
  • #3
Math Amateur
Gold Member
1,067
47
Thanks fresh_42 for a most helpful post ...

Reflecting on what you have written ...

Peter
 
  • #4
andrewkirk
Science Advisor
Homework Helper
Insights Author
Gold Member
3,875
1,448
Let ##p = (p_1,....,p_n)## and ##q=(p_1,...,p_{n-1})## its projection on the hyperplane H given by ##x_n=0## (note that means that ##p_n=f(p_1,...,p_{n-1})=f(q)##). You can think of H as the horizontal plane in the 3D case, in which case q is the spot on H that is vertically below p, and that maps to p under function ##f##.

For ##j = 1,...,n-1## let ##b_j(t)=q + t \mathbf e_j##, and then define ##c_j(t) = \bigg(b_j(t),f(b_j(t))\bigg) ##.

Then it is not difficult to show that ##c_j(0)=p## and ##(c_j)'(0) = (\mathbf e_j)_p## so that all the ##(\mathbf e_j)_p## are in the tangent space (by 3.3.12).

We can also show that the vectors ##(\mathbf e_j)_p## are linearly independent. Indeed, I think that may have already been implicitly proved in one of the other threads you posted about this text, about the rank of a Jacobian.

We then use Thm 3.3.13 that tells us the tangent space is a n-1 dimensional subspace. Linear algebra tells us that any set of n-1 linearly independent vectors in a n-1 dimensional space forms a basis for that space, so the n-1 vectors ##(\mathbf e_j)_p## are a basis for the tangent space.

Don't worry about his use of the words 'standard basis vectors'. I think he just means that he will be using them as his default basis for the subspace, not that they have some special property of 'standardness'. Indeed, the vectors do not all have length 1, which is a property often sought in 'standard' bases.

Edited 5:25 pm 20/4/19 to correct an error in the formula for ##c_j(t)##, which then enabled a simplification of the formula.
 
Last edited:
  • #5
Math Amateur
Gold Member
1,067
47
Thanks Andrew ...

Thinking through what you have written ...

Peter
 

Related Threads on Bases for Tangent Spaces and Subspaces - McInerney Theorem 3.3.14

Replies
1
Views
929
  • Last Post
Replies
3
Views
1K
Replies
23
Views
16K
  • Last Post
Replies
14
Views
4K
Replies
4
Views
942
Replies
4
Views
847
  • Last Post
Replies
17
Views
2K
  • Last Post
Replies
6
Views
5K
  • Last Post
Replies
3
Views
3K
Replies
4
Views
2K
Top