Basic Measure Theory: Borel ##\sigma##- algebra

  • Context: Undergrad 
  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on the properties of the set ##U_f## in relation to the Borel ##\sigma##-algebra. It establishes that ##U_f## is an open subset of the metric space ##\Omega_1 = \mathbb{R}##, demonstrating that it belongs to the Borel ##\sigma##-algebra. The proof utilizes the definitions of continuity and discontinuity, specifically through the function ##f:\mathbb{R} \to \mathbb{R}^2## defined as ##f(x) = (x, x^2)## for ##x \neq 0## and ##f(0) = (0,1)##. The example provided effectively illustrates the concepts of open sets and their relationship to the Borel structure.

PREREQUISITES
  • Understanding of metric spaces, specifically ##\mathbb{R}## and ##\mathbb{R}^2##.
  • Familiarity with the concepts of continuity and discontinuity in functions.
  • Knowledge of Borel ##\sigma##-algebras and their properties.
  • Basic comprehension of open sets in topology.
NEXT STEPS
  • Study the properties of Borel sets and their significance in measure theory.
  • Explore the concept of continuity in more complex functions and spaces.
  • Learn about different types of metrics and their implications in topology.
  • Investigate the relationship between open sets and closed sets in metric spaces.
USEFUL FOR

Mathematicians, students of analysis, and anyone interested in understanding measure theory and the properties of Borel sets in topology.

WMDhamnekar
MHB
Messages
378
Reaction score
30
TL;DR
Let ##(\Omega_1, d_1)## and ##(\Omega_2, d_2)## be metric spaces and let ##f : \Omega_1 \to \Omega_2 ## be an arbitrary map. Denote by ##U_f =\{x \in \Omega_1 :## f is discontinuous at ##x\}## the set of points of discontinuity of ##f##. Show that ##U_f \in \mathcal{B}(\Omega_1).##
1684847046128.png

My answer:
We can proceed as follows. Let ##x \in U_f##. Since ##f## is discontinuous at ##x##, there exists ##\varepsilon > 0## such that for some ##\delta > 0##, we can find ##y, z \in B_{\varepsilon}(x)## with ##d_2(f(y),f(z)) > \delta##. Therefore, ##x \in U^{\delta,\varepsilon}_f##. So, ##U_f \subset U^{\delta,\varepsilon}_f##. Since ##U^{\delta,\varepsilon}_f## is open, any subset of it is also open. So ##U_f## is open.

Next, we show that for any ##\delta, \varepsilon>0##, we have ##U^{\delta, \varepsilon}_f \subset U_f##. Let ##x \in U^{\delta, \varepsilon}_f##. Then there exist ##y,z \in B_{\varepsilon}(x)## such that ##d_2(f(y),f(z)) > \delta##. Since ##f(y) \neq f(z)##, ##f## cannot be continuous at ##x##. Therefore, ##x \in U_f##. Thus, ## U^{\delta,\varepsilon}_f \subset U_f##.

Taking intersection over all ##\delta##, ##\varepsilon##, we have ##U_f = \bigcap_{ \delta, \varepsilon > 0}U^{\delta,\varepsilon}_f##. Since intersections of open sets are open, ##U_f## is open.
Here is an example:

Let ##\Omega_1 = \mathbb{R}## with the usual metric ##d_1(x,y) = |x-y|##, and ##\Omega_2 = \mathbb{R}^2## with the Euclidean metric ##d_2((x_1,y_1),(x_2,y_2)) = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}##.

Define ##f:\mathbb{R} \to \mathbb{R}^2## as ##f(x) = (x, x^2)## if ##x \neq 0## and ##f(0) = (0,1)##.

Then, ##f## is discontinuous at ##x=0##. For any ##\varepsilon > 0##, taking ##\delta = 1##, we can find ##y = -\varepsilon/2 < 0## and ##z = \varepsilon/2 > 0## in ##B_{\varepsilon}(0)## such that ##d_2(f(y),f(z)) = |(-1/2,0) - (1/2,0)| = 1 > \delta = 1##. Therefore, ##0 \in U^{\delta,\varepsilon}_f## for all ##\delta, \varepsilon > 0##. Hence, ##0 \in U_f##.

Also, for any ##x \neq 0, f## is continuous at ##x##. Therefore, ##U_f = \{0\}##. Since ##\{0\}## is open in ##\mathbb{R}##, ##U_f## is open.
Hence, in this example, ##U_f = \{0\} \in \mathcal{B}(\Omega_1 = \mathbb{R})##.

Therefore, ##U_f## is an open subset of ##\Omega_1##. Hence, ##U_f \in \mathcal{B}(\Omega_1)##.

Is this answer and example correct?
 
Last edited:
Physics news on Phys.org


Yes, your answer and example are correct. You have correctly shown that ##U_f## is an open subset of ##\Omega_1## and therefore belongs to the Borel ##\sigma##-algebra on ##\Omega_1##. Your example also illustrates the concept of continuity and discontinuity in a clear and concise manner. Well done!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K