Basic question about Laplace and signals properties

AI Thread Summary
A Butterworth high-pass filter's temporal response equation was derived as y(t)=√2 e^(-31100t) *cos(31000t+π/4)u(t). The user is tasked with finding the output equation for a constant 1V signal from 0 to 0.5ms, transitioning to 0V from 0.5 to 1ms. They struggled with the simulation results in MATLAB, which indicated a response to the voltage transition. A solution was found using the superposition principle, involving the subtraction of two step functions to create a pulse for the first 0.0005 seconds. This approach allows for the correct representation of the output in the time domain.
tamtam402
Messages
199
Reaction score
0
Hey guys, I have a butterworth high-pass filter, and I was asked to find it's temporal response equation to the u(t) function. That part was easy, using basic Laplace tables I was able to find the following equation:
y(t)=√2 e^(-31100t) *cos⁡(31000t+π/4)u(t)
However, I'm supposed to be able to use that result to find the output equation (in the time domain) for a constant signal of magnitude 1V from 0 to 0.5ms, and 0V from 0.5 to 1ms. I'm at a loss here, because when using simulink (in Matlab) to simulate the response, I see that the output "responds" to the 1V to 0V transition. That means I can't simply use my equation with u(t) = 1 for t = 0 to 0.5ms, and u(t) = 0 for t = 0.5 to 1ms. What am I supposed to do?
 
Engineering news on Phys.org
I would help you, but I'm signed up to take my first signals class next quarter!

Sorry!

Doesn't time domain mean just convert it from phasors to regular coordinates? but you already have it in terms of t so yah I wouldn't be able to help you yet :|
 
Ok I found out how to solve the problem. Using the superposition principle, substract 2 step functions to generate a pulse only for the first 0.0005 seconds. Do the same thing on the output.
 
Very basic question. Consider a 3-terminal device with terminals say A,B,C. Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (KVL) establish two relationships between the 3 currents entering the terminals and the 3 terminal's voltage pairs respectively. So we have 2 equations in 6 unknowns. To proceed further we need two more (independent) equations in order to solve the circuit the 3-terminal device is connected to (basically one treats such a device as an unbalanced two-port...
suppose you have two capacitors with a 0.1 Farad value and 12 VDC rating. label these as A and B. label the terminals of each as 1 and 2. you also have a voltmeter with a 40 volt linear range for DC. you also have a 9 volt DC power supply fed by mains. you charge each capacitor to 9 volts with terminal 1 being - (negative) and terminal 2 being + (positive). you connect the voltmeter to terminal A2 and to terminal B1. does it read any voltage? can - of one capacitor discharge + of the...

Similar threads

Replies
31
Views
11K
Replies
1
Views
2K
Replies
4
Views
3K
Replies
3
Views
1K
Replies
4
Views
2K
Replies
34
Views
12K
Replies
2
Views
2K
Replies
5
Views
3K
Back
Top