Undergrad Basic standard deviation calculation

Click For Summary
The discussion focuses on the calculation of standard deviation (SD) and its relationship with rate and time. It clarifies that the standard deviation of total counts (n) is expressed as √n, while the rate (r) is defined as n/t. The equations presented demonstrate how changes in counts (Δn) and rate (Δr) relate to time. The conversation highlights the importance of squaring in the denominator for accurate calculations. Overall, the thread emphasizes understanding the foundational equations for standard deviation in relation to counts and rates.
Graham87
Messages
72
Reaction score
16
I don’t get how they got the equation for the standard deviation. Why do they only square with the time in the denominator?

Thanks!

4A5AE19B-D40A-40F4-BA74-4ADD1416F63E.jpeg

A536CA42-AB1E-4112-ABF7-E055104CC803.jpeg
 
Physics news on Phys.org
We know that the SD of the total number of counts n is √n and rate r =n/t

So;
n=rt
Δn = (Δr)⋅t =√(n/t)t
Δr=√(n)/t =√(n/t2)
 
gleem said:
We know that the SD of the total number of counts n is √n and rate r =n/t

So;
n=rt
Δn = (Δr)⋅t =√(n/t)t
Δr=√(n)/t =√(n/t2)
Aha! Thanks!
 
Greetings, I am studying probability theory [non-measure theory] from a textbook. I stumbled to the topic stating that Cauchy Distribution has no moments. It was not proved, and I tried working it via direct calculation of the improper integral of E[X^n] for the case n=1. Anyhow, I wanted to generalize this without success. I stumbled upon this thread here: https://www.physicsforums.com/threads/how-to-prove-the-cauchy-distribution-has-no-moments.992416/ I really enjoyed the proof...

Similar threads

  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 24 ·
Replies
24
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K