Bessel's Differential equation

Fisherman87
Messages
6
Reaction score
0

Homework Statement



A solid ball at 30 degrees C with radius a=1 is placed in a refrigerator that maintains a constant temperature of 0 degrees C. Take c (speed)=1 and determine the temperature u(r,theta,phi,t) inside the ball

Homework Equations



partial differential heat equation in spherical coordinates

The Attempt at a Solution



In this case, I started out with setting all the partials of the function u (assuming u is the solution) with respect to theta and phi as 0 since the temperature is uniform and doesn't depend on either. I then set u(r,t)=R(r)T(t), and then plugged back into the partial equation in order to separate variables, and I got T(t)=exp(mu*t). However, R turns into a bessel equation that I can't figure out how to solve, with the coefficient of R double prime equal to r^2, the coefficient of R prime being 2r, and the coefficient of R being mu. Mu is the separation constant. The book is generally unhelpful. Can anyone tell me how to solve that equation?
 
Physics news on Phys.org
Fisherman87 said:

Homework Statement



A solid ball at 30 degrees C with radius a=1 is placed in a refrigerator that maintains a constant temperature of 0 degrees C. Take c (speed)=1 and determine the temperature u(r,theta,phi,t) inside the ball

Homework Equations



partial differential heat equation in spherical coordinates

The Attempt at a Solution



In this case, I started out with setting all the partials of the function u (assuming u is the solution) with respect to theta and phi as 0 since the temperature is uniform and doesn't depend on either. I then set u(r,t)=R(r)T(t), and then plugged back into the partial equation in order to separate variables, and I got T(t)=exp(mu*t). However, R turns into a bessel equation that I can't figure out how to solve, with the coefficient of R double prime equal to r^2, the coefficient of R prime being 2r, and the coefficient of R being mu. Mu is the separation constant. The book is generally unhelpful. Can anyone tell me how to solve that equation?

The Bessel's equation is solved with series methods. You can read about how to do it here:

http://www.ucl.ac.uk/~ucahhwi/MATH7402/handout9.pdf
 
Last edited by a moderator:
I guess I should've been more descriptive. I have all that information already (even though this is for spherical coordinates and not polar). The equation I got for the last term multiplied by R is mu*r^2. This is why I'm having trouble, since it doesn't really agree completely with the normal bessel equation, and I don't understand how the helmholtz equation is related to this equation, and why I should use it.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top