How do bilinear covariants relate to the Dirac equation's broader implications?

  • Thread starter Thread starter jdstokes
  • Start date Start date
jdstokes
Messages
520
Reaction score
1
Can anyone explain to me how these fit into the bigger picture of the Dirac equation, or suggest a reference?

The only thing I've been able to absorb from reading about these is that they explain the choice of normalization for plane waves \psi (since \psi^\dag\psi is the fourth component of a 4-vector and hence must transform as the 4th component of the momentum-energy vector).

Incidentally, I've been reading about how solution to the charge conjugated Dirac equation is a negative energy state, thus giving support to the ``positron ~ negative energy solution to Dirac equation" theory.

Is there any physical reason why the bilinear covariants should be invariant under charge conjugation?
 
Physics news on Phys.org
Mmm... I wouldn't normally do this, but I think Peskin & Schroeder do a good job of explaining these. Essentially, you show how various spinor and dirac matrices transform under Lorentz transformations. Then you build the most general Lagrangian you can that is Lorentz invariant. There isn't much room to work with when you're done.

I am not sure if all bilinear covariants are invariant under charge conjugation, but only because I haven't explicitly checked this. However, I think that perhaps the Coleman-Mandula theorem would guarantee this somehow. It basically states that Lorentz and "internal" symmetries do not mix. Charge follows from the U(1) symmetry of the fields.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top