(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let f(x) = integral [x to x+1] (sin(e^t)dt).

Show that (e^x) * |f(x)| < 2

and that (e^x) * f(x) = cos (e^x) - (e^-1)cos(e^(x+1)) + r(x) where:

|r(x)| < Ce^-x, C is a constant

2. Relevant equations

integration by parts

3. The attempt at a solution

Well, this integral obviously isn't an elementary function but I don't really care what it's equal to, just that the product of its absolute value and e^x is less than 2 for all x>0.

So I get:

(x+1)sin(e^(x+1)) - xsin(e^x) - integral [x to x+1] (t(e^t)cos(e^t)dt)

<= xsin(e^(x+1)) + sin(e^(x+1)) - xe^x + integral [x to x+1] ((te^t)dt) (since cos is between -1 and 1)

= xsin(e^(x+1)) + sin(e^(x+1)) - xe^x + te^t [evaluated at x to x+1] - integral [x+1 to x] e^t.

= xsin(e^(x+1)) + sin(e^(x+1)) - xe^x + (x+1)e^(x+1) - xe^x - e^(x+1) + e^x

Which doesn't really get me any kind of maximum value on the function if I take the derivative of that function times e^x.

1. The problem statement, all variables and given/known data

2. Relevant equations

3. The attempt at a solution

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Binding an integral Rudin 6.14

**Physics Forums | Science Articles, Homework Help, Discussion**