Binomial distribution of children

kay123
Messages
2
Reaction score
0
I'm trying to figure out this problem but i keep getting stuck.

Homework Statement

A woman wants to have a 95% chance for a least a one boy and at least one girl. What is the minimum number of children that she should plan to have? Assume that the event that a child is a girl and a boy is equiprobable and independent of the gender of the other children born in the family.

Relevant equations

So i know you should use Pr(K = k) = (n\choose k)p^k(1-p)^(n-k)

The attempt at a solution

since the it's a 95% chance Pr(K=k)= .95
probability of a boy or girl is 50% so it's .5

.95= (n\choose k).5^k(1-.5)^(n-k)
but then how would you solve or find what n and k is?
Am i missing something here?

Can anyone help! thank you in advance.
 
Physics news on Phys.org
kay123 said:
A woman wants to have a 95% chance for a least a one boy and at least one girl.

In other words the probability of n children being either all boys or all girls is less than 5%.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top