MHB Binomial distribution regarding: (≤, >, etc.)

Click For Summary
SUMMARY

The discussion focuses on calculating probabilities for a binomial random variable X with parameters p = 0.2 and n = 20. The correct probabilities derived from the binomial table are P(X ≤ 3) = 0.4114, P(X > 10) = 0.0006, P(X = 6) = 0.1091, and P(6 ≤ X ≤ 11) = 0.1957. The confusion arises from misunderstanding cumulative probabilities and how to apply them correctly for specific ranges. The participants clarify that cumulative probabilities must be used to derive specific probabilities by subtraction.

PREREQUISITES
  • Understanding of binomial distribution concepts
  • Familiarity with cumulative probability tables
  • Basic knowledge of probability calculations
  • Ability to interpret statistical notation
NEXT STEPS
  • Study binomial distribution properties and applications
  • Learn how to use cumulative distribution functions (CDF) effectively
  • Explore advanced probability concepts such as Poisson and normal approximations
  • Practice calculating probabilities using binomial tables and software tools
USEFUL FOR

Students, statisticians, and data analysts who are working with binomial distributions and require a deeper understanding of probability calculations and interpretations.

iamlorde
Messages
6
Reaction score
0
Question is as follows:

Let X be a binomial random variable with p = 0 2 .
and n = 20. Use the binomial table in Appendix A to determine
the following probabilities.
(a) P(X ≤ 3) (b) P(X > 10)
(c) P(X = 6) (d) P(6 ≤ X ≤ 11)

NK7cCqq.gif


(a) = 0.4114 is the answer. Yet all I see from this answer is that X is simple equal to "0.4114". If it is "X ≤ 3" shouldn't "0.2061", "0.0692", and "0.0115" contribute to the answer somehow because they are "<" smaller than 3?

I feel like I may be missing a fundamental element here. How do I proceed with these in general? My logic seems flawed on this matter.

For example: (c) = 0.9133-0.8042=0.1091; how is this possible. Why isn't this straight out "0.9133", the value directly next to #6?

Please enlighten me on this matter. Thank you.
 
Physics news on Phys.org
The numbers in the column of your table are cumulative, and so for a) you would simply read from the table to get:

a) $$P(x\le3)=0.4114$$

And for c), you would do the following:

c) $$P(x=6)=P(x\le6)-P(x\le5)=0.9133-0.8042=0.1091$$

How do you now suppose you would do parts b) and d)?
 
So, I would think,

(b) P(X > 10) = [!not](everything up to and including 10) = 1-0.9994 = 0.0006

(d) P(6 ≤ X ≤ 11) :

X is between 6 and 11, AND it includes them both, so I choose one above 11, so 12 which is: 1.0000. Then I choose one below 6, so 5, so that I can include 6. Hence: 0.8042.

Now I subtract: 1 - 0.8042 = 0.1958 (YET THIS IS FALSE)
My solution says: 0.1957?
 
Your solution for (d) is almost correct. The problem is that you've calculated $\mathbb{P}(6 \leq X \leq 12)$ because you've also included $12$. We have

$$\mathbb{P}(6 \leq X \leq 11) = \mathbb{P}(X \in \{6,7,8,9,10,11\}) = \mathbb{P}(X \leq 11) - \mathbb{P}(X \leq 5) = 0.1957$$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
4K
Replies
3
Views
3K
Replies
1
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K