I'm not sure what your "next term" would be, but there is a very simple correction to Stirling that gives an upper bound on ##n!##:
\text{St}(n) < n! < \text{St1}(n) \\<br />
\text{where} \\<br />
\text{St}(n) = \sqrt{2 \pi n} n^n e^{-n}, \;<br />
\text{St1}(n) = \sqrt{2 \pi n} n^n e^{-n + \frac{1}{12n}}<br />
If we call St1(n) the corrected Stirling, it gives much better accuracy, even for small ##n##:
<br />
\begin{array}{cccc}<br />
n & n! & \text{Stirling} & \text{Corrected Stirling}\\<br />
1 & 1 & 0.922137 & 1.002274\\<br />
2 & 2 & 1.919004 & 2.000652 \\<br />
5 & 120 & 118.0192 & 120.0026 \\<br />
10 & 3628800 & 3598696 & 3628810 \\<br />
15 & 1.307674e+12 & 1.300431e+12 & 1.307675e+12 \\<br />
20 & 2.432902e+18 & 2.422787e+18 & 2.432903e+18 \\<br />
25 & 1.551121e+25 & 1.545959e+25 & 1.551121e+25 \\<br />
30 & 2.652529e+32 & 2.645171e+32 & 2.652529e+32<br />
\end{array}<br />
Note that
\log(\text{St1}(n)) = \frac{1}{2} \log(2 \pi) +\frac{1}{2} \log(n) + n \log(n) - n + \frac{1}{12n}
Was that the "correction" you cited?