@naviakam Think about what happens to a gas as you heat it up , as long as it is a gas it will follow the Boltzmann distribution curve but at some point say by introducing a strong RF field or by heating it to extreme temperatures it will become a plasma. So no more gas molecules.
I already explained why electric discharge can't produce a MB distribution within a gas. To put it simply it is because if the discharge current is low (as is in most if not all gas discharge lamps) then only a few of the outer electrons get ionized and only they participate in the light emission. This is a partial ionization state, so the bulk material stays at room or close to room temperature. Think about it , this is why fluorescent lights are on average two to three times as bright for the same power consumption compared to a equivalent color temperature incandescent. Because you don't have to heat up the whole material to get the same color temperature.
I think there could not be "such a thing" as you say. Think about it this way. A gas discharge is essentially just an electric current running through a volume of partially ionized gas , the same electric current could run through a tungsten wire. Now in the tungsten it would heat it up evenly and cause it to emit a blackbody spectrum (not perfect since even metals don't have a perfect continuum emission spectrum you can look it up) but close enough.
Now the same current through the gas doesn't produce a black body, first of all the emission spectrum is not continuous but rather with discrete peaks, second of all the material isn't heated up evenly, in fact it's physically cold and only some electrons are "hot" within the volume.
Eventually it has to do with the atomic structure of different elements , metals have higher atomic numbers and a different atomic structure within them than gases do also gases have lower atomic number on average.
The result of this is that a current through metal simply heats it up evenly while a current through gas doesn't. At some point if you would increase the discharge current to a very high value the gas instead of simply heating up would rather become fully ionized and turn into a plasma.