Bloch wavepackets and the Pauli exclusion principle

pedda
Messages
5
Reaction score
0
Hello,

I have a question concerning the use of wavepackets to justify the semiclassical approach in solid state physics. In Ashcroft/Mermin, the authors briefly mention that we can construct wave packets and then use them to describe the motion of the center which can be interpreted as what one usually calls the point particle electron. Now, the problem that I have is that for each state there is one Bloch vector k. If I was to form a wave packet spreading over several k, how can there be a second electron occupying the state k' that is right next to k? The packet centered around k will definitely have components of wave vector k' and vice versa. Doesn't this violate the pauli exclusion principle?

- Peter
 
Physics news on Phys.org
bump!
I have the same question :(. Did you manage to resolve it Peter??
 
Hey,

yes, I did resolve it for me, but I don't know if it is correct. The Pauli exclusion principle states that the wave function has to be antisymmetric with respect to the exchange of particles. The fact that you have two wavepackets centered around two different ks doesn't violate this principle, even if they are centered at the same place. You can write down the wavefunction for two gaussian wavepackets in the position representation. You will see that you will get something like

e^{-(x_1-ik_1)^2}e^{-(x_2-ik_2)^2}-e^{-(x_1-ik_2)^2}e^{-(x_2-ik_1)^2}

+ some prefactors and other stuff. As you see, no problem here!

Hope this helps, Peter
 
I don't see any way to edit my last post, but an important part that I left out is the actual time development that appears in the denominator of the exponentials, so don't take what I've written too seriously. The most important part is that symmetrization works even for wavepackets as long as they are not centered around the same eigenvalue k.
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top