MHB Bob's question at Yahoo Answers regarding an indefinite integral

AI Thread Summary
The integral of tan^3(1/z)/z^2 dz can be solved using the substitution u = 1/z, which transforms the integral into -∫tan^3(u) du. By applying the Pythagorean identity, the integral is rewritten and split into two parts: -∫tan(u) sec^2(u) du and ∫sin(u)/cos(u) du. After further substitutions, the final result is expressed as ln|sec(1/z)| - (1/2)tan^2(1/z) + C. This solution provides a clear method for integrating the given function.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

I need help integrating a Calculus 2 problem?

How do I integrate tan^3(1/z)/z^2 dz
Please show all work and thanks for the help

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Bob,

We are given to integrate:

$$\int\frac{\tan^3\left(\frac{1}{z} \right)}{z^2}\,dz$$

Let's use the substitution:

$$u=\frac{1}{z}\,\therefore\,du=-\frac{1}{z^2}\,dz$$

and the integral becomes:

$$-\int\tan^3(u)\,du$$

Next, let's employ the Pythagorean identity $$\tan^2(x)+1=\sec^2(x)$$, and rewrite the integral as:

$$-\int\tan(u)\cdot\tan^2(u)\,du=-\int\tan(u)\left(\sec^2(u)-1 \right)\,du=-\int\tan(u)\sec^2(u)-\tan(u)\,du=$$

$$\int\frac{\sin(u)}{\cos(u)}\,du-\int\tan(u)\sec^2(u)\,du$$

On the first integral, use the substitution:

$$v=\cos(u)\,\therefore\,dv=-\sin(u)\,du$$

On the second integral, use the substitution:

$$w=\tan(u)\,\therefore\,dw=\sec^2(u)\,du$$

And now we have:

$$-\int\frac{1}{v}\,dv-\int w\,dw=-\ln|v|-\frac{w^2}{2}+C$$

Back-substituting for $v$ and $w$, we have:

$$\ln|\sec(u)|-\frac{1}{2}\tan^2(u)+C$$

Back-substituting for $u$, we have:

$$\ln\left|\sec\left(\frac{1}{z} \right) \right|-\frac{1}{2}\tan^2\left(\frac{1}{z} \right)+C$$

Hence, we may state:

$$\int\frac{\tan^3\left(\frac{1}{z} \right)}{z^2}\,dz=\ln\left|\sec\left(\frac{1}{z} \right) \right|-\frac{1}{2}\tan^2\left(\frac{1}{z} \right)+C$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top