I Boltzmann equation for annihilation

AI Thread Summary
The discussion centers on the Boltzmann equation for annihilation as presented in Dodelson's textbook. Participants express confusion about various components of the equation, including the role of the delta functions in ensuring energy and momentum conservation, and the significance of the amplitude |M|. Clarifications indicate that the delta functions are crucial for maintaining conservation laws and that the factors of (2π) are for normalization. The conversation also touches on the interpretation of particle densities and distribution functions, emphasizing the relationship between production and annihilation rates. Overall, the dialogue seeks a deeper understanding of the equation's derivation and its implications for particle abundance changes.
happyparticle
Messages
490
Reaction score
24
TL;DR Summary
Trying to understand the right hand side of the Boltzmann equation for annihilation for the rate of change in the abundance of a given particle.
In the Dodelson's textbook, the author introduce the Boltzmann equation for annihilation.

##a^{-3} \frac{d(n_1 a)}{dt} = \int \frac{d^3 p_1}{(2 \pi)^3 2E_1} \int \frac{d^3 p_2}{(2 \pi)^3 2E_2} \int \frac{d^3 p_3}{(2 \pi)^3 2E_3} \int \frac{d^3 p_4}{(2 \pi)^3 2E_4} \times (2 \pi)^4 \delta^3 (p_1 + p_2 - p_3 - p_4) \delta (E_1 + E_2 - E_3 - E_4)|M|^2 \times {f_3 f_4[1 \pm f_1] [1 \pm f_2] - f_1 f_2 [1 \pm f_3] [1 \pm f_4]}##

I don't understand the right hand part of the equation. Where all the part comes from? Why ##p_i, f_i## are outside of the integrals? What |M| means? I can't figure out how all the right hand side is related to the rate of change in the abundance of a given particle.

I'm guessing that ##n_i## is the particle density and ##f_i## is the the expected number of particles in an energy state.
 
Space news on Phys.org
happyparticle said:
Why ##p_i, f_i## are outside of the integrals?
They are not.

happyparticle said:
What |M| means?
That would be the amplitude of the annihilation.

happyparticle said:
I can't figure out how all the right hand side is related to the rate of change in the abundance of a given particle.
Rate of change = production - annihilation

The delta functions ensure energy and momentum conservation. The distribution functions implement rates - including fermi blocking etc. The integrals integrate over all possible states. You are missing parentheses around the f terms.
 
Thank you for the explanation.
However, I'm not sure how exactly the delta functions ensure the energy and moment conservation. Also, I don't see why there is a ##(2 \pi)^4## and ##\delta^3##.

I was looking for a full derivation of this equation. Unfortunately, I can't find any. I'm wondering if I'm using the right name for the equation.
 
The ##\delta^3## is momentum conservation. Try writing out the conditions for the deltas being nob-zero!

The factors of ##2\pi## are for correct normalization.
 
Orodruin said:
The ##\delta^3## is momentum conservation. Try writing out the conditions for the deltas being nob-zero!
Thus, I have ##\delta(0)^3 = \infty## which give a infinite rate of change. I don't understand.
 
happyparticle said:
Thus, I have ##\delta(0)^3 = \infty## which give a infinite rate of change. I don't understand.
This is wrong. Do you know how to evaluate the simple 3D integral ##\intop_{\text{All Space}}d^{3}x\,f\left(\vec{x}\right)\delta^{3}\left(\vec{x}-\vec{x}_{0}\right)##?
 
happyparticle said:
Thus, I have ##\delta(0)^3 = \infty## which give a infinite rate of change. I don't understand.
No you don’t. It is inside several integrals over momenta and essentially ensures that the momenta that you integrate over satisfy momentum and energy conservation
 

Similar threads

Replies
1
Views
1K
Replies
7
Views
3K
Replies
3
Views
2K
Replies
10
Views
3K
Replies
4
Views
4K
Replies
1
Views
1K
Back
Top