Bounded sets: x = [1, 2] U [3, 4] c R

  • Thread starter Thread starter 939
  • Start date Start date
  • Tags Tags
    Bounded Sets
939
Messages
110
Reaction score
2
Hello. Please look over my answers!

Homework Statement



a) Prove that this set is not convex: x = [1, 2] U [3, 4] c R
b) Prove the intersection of two bounded sets is bounded

Homework Equations



for a) x = [1, 2] U [3, 4] c R

The Attempt at a Solution



a) A convex set is where you can draw a line at two chosen points inside a set and everything between them will be inside the set. But here, you can have a set of points at 1 and 3 and connect them,however not all of the line will be in the set and thus is not convex. More formally, a set C is convex if for two points k, p ∈ C, the point t(k) + (1-t)(p) ∈ C for all t∈ [0, 1]. However, here, if you let t = 0.4, the result is 2.2 which is NOT in the set and is thus not convex.

b) I am not exactly sure how to proove this. Every finite set is bounded. Thus, when two bounded sets intersect, the intersection also must be bounded because it has an upper and lower interval.
 
Physics news on Phys.org
939 said:
Hello. Please look over my answers!

Homework Statement



a) Prove that this set is not convex: x = [1, 2] U [3, 4] c R
b) Prove the intersection of two bounded sets is bounded

Homework Equations



for a) x = [1, 2] U [3, 4] c R

The Attempt at a Solution



a) A convex set is where you can draw a line at two chosen points inside a set and everything between them will be inside the set. But here, you can have a set of points at 1 and 3 and connect them,however not all of the line will be in the set and thus is not convex. More formally, a set C is convex if for two points k, p ∈ C, the point t(k) + (1-t)(p) ∈ C for all t∈ [0, 1]. However, here, if you let t = 0.4, the result is 2.2 which is NOT in the set and is thus not convex.

b) I am not exactly sure how to proove this. Every finite set is bounded. Thus, when two bounded sets intersect, the intersection also must be bounded because it has an upper and lower interval.

The first one is fine. I would have picked 2 and 3 and k=1/2, but tastes differ. It works. For the second one if A and B are bounded, then the intersection of A and B is contained in A. Isn't it? You don't even need both sets to be bounded. Just one.
 
  • Like
Likes 1 person
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top