Calc- prove sinh(x) and cosh(x) identities?

  • Thread starter Thread starter J.live
  • Start date Start date
  • Tags Tags
    identities
J.live
Messages
95
Reaction score
0

Homework Statement



Prove

cosh(2x)= cosh^2(x) + sinh^2(x)


Homework Equations




sinh(x) ≡ [ e^(x) - e^(-x) ] / 2

cosh(x) ≡ [ e^(x) + e^(-x) ] / 2


The Attempt at a Solution




= { [ e^(x) + e^(-x) ] / 2 }² + { [ e^(x) - e^(-x) ] / 2 }²

= [ e^(x) + e^(-x) ]² / 2² + [ e^(x) - e^(-x) ]² / 2²

... gets confusing after this. Thanks in advance.
 
Physics news on Phys.org
J.live said:

Homework Statement



Prove

cosh(2x)= cosh^2(x) + sinh^2(x)


Homework Equations




sinh(x) ≡ [ e^(x) - e^(-x) ] / 2

cosh(x) ≡ [ e^(x) + e^(-x) ] / 2


The Attempt at a Solution




= { [ e^(x) + e^(-x) ] / 2 }² + { [ e^(x) - e^(-x) ] / 2 }²

= [ e^(x) + e^(-x) ]² / 2² + [ e^(x) - e^(-x) ]² / 2²

... gets confusing after this. Thanks in advance.

How is it confusing? All you are doing is expanding the squares of two binomials. You know how to expand (a + b)2, right?
 
Have you tried expanding the brackets on the numerators?
 
J.live said:
confusing

Not the right attitude ! :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top