\int_{(x_0,y_0,z_0)}^{(x_1,y_1,z_1)}\frac{\frac{ \partial{x}}{\partial{s}}\delta( \frac{\partial{x}}{\partial{s}})+\frac{\partial{y}}{\partial{s}}\delta( \frac{\partial{y}}{\partial{s}})+\frac{\partial{z}}{\partial{s}}\delta( \frac{\partial{z}}{\partial{s}})}{\sqrt{(\frac{ \partial{x}}{\partial{s}})^2+( \frac{\partial y}{\partial{s}})^2+(\frac{\partial{z}}{\partial {s}})^2}}ds=0\Rightarrow\int_{(x_0,y_0,z_0)}^{(x_1,y_1,z_1)}\frac{\frac{ \partial{x}}{\partial{s}}\delta( \frac{\partial{x}}{\partial{s}})}{\sqrt{(\frac{ \partial{x}}{\partial{s}})^2+( \frac{\partial y}{\partial{s}})^2+(\frac{\partial{z}}{\partial {s}})^2}}ds+\int_{(x_0,y_0,z_0)}^{(x_1,y_1,z_1)} \frac{\frac{ \partial{y}}{\partial{s}}\delta( \frac{\partial{x}}{\partial{s}})}{\sqrt{(\frac{ \partial{x}}{\partial{s}})^2+( \frac{\partial y}{\partial{s}})^2+(\frac{\partial{z}}{\partial {s}})^2}}ds+\int_{(x_0,y_0,z_0)}^{(x_1,y_1,z_1)} \frac{\frac{ \partial{z}}{\partial{s}}\delta( \frac{\partial{x}}{\partial{s}})}{\sqrt{(\frac{ \partial{x}}{\partial{s}})^2+( \frac{\partial y}{\partial{s}})^2+(\frac{\partial{z}}{\partial {s}})^2}}ds=0 taking U=\frac{\frac{ \partial{q}}{\partial{s}}}{\sqrt{(\frac{ \partial{x}}{\partial{s}})^2+( \frac{\partial y}{\partial{s}})^2+(\frac{\partial{z}}{\partial {s}})^2}} and dV=\delta( \frac{\partial{q}}{\partial{s}})ds=\frac{\partial{(\delta{}q)}}{\partial{s}}ds=d(\delta{q}), where q is the appropriate coordinate in each integral, one obtains \left[\frac{\frac{ \partial{x}}{\partial{s}}\delta{x}+\frac{\partial{y}}{\partial{s}}\delta{y}+\frac{\partial{z}}{ \partial{s}}\delta{z}}{\sqrt{(\frac{ \partial{x}}{\partial{s}})^2+( \frac{\partial y}{\partial{s}})^2+(\frac{\partial{z}}{\partial {s}})^2}}\right]_{(x_0,y_0,z_0)}^{(x_1,y_1,z_1)}-\int_{(x_0,y_0,z_0)}^{(x_1,y_1,z_1)}\frac{\partial}{\partial{s}}\left[\frac{\frac{ \partial{x}}{\partial{s}}}{\sqrt{(\frac{ \partial{x}}{\partial{s}})^2+( \frac{\partial y}{\partial{s}})^2+(\frac{\partial{z}}{\partial {s}})^2}}\right]\delta{x}+ \frac{\partial}{\partial{s}}\left[ \frac{\frac{ \partial{y}}{\partial{s}}}{\sqrt{(\frac{ \partial{x}}{\partial{s}})^2+( \frac{\partial y}{\partial{s}})^2+(\frac{\partial{z}}{\partial {s}})^2}}\right]\delta{y}+\frac{\partial}{\partial{s}}\left[ \frac{\frac{ \partial{z}}{\partial{s}}}{\sqrt{(\frac{ \partial{x}}{\partial{s}})^2+( \frac{\partial y}{\partial{s}})^2+(\frac{\partial{z}}{\partial {s}})^2}}\right]\delta{z}\,\,ds=0. By the fundamental principle of variational calculus the coefficients of the variations must independently vanish. This yields three coupled partial differential equations: \frac{\partial}{\partial{s}}\left[\frac{\frac{ \partial{x}}{\partial{s}}}{\sqrt{(\frac{ \partial{x}}{\partial{s}})^2+( \frac{\partial y}{\partial{s}})^2+(\frac{\partial{z}}{\partial {s}})^2}}\right]=0\,\,\,\,\frac{\partial}{\partial{s}}\left[ \frac{\frac{ \partial{y}}{\partial{s}}}{\sqrt{(\frac{ \partial{x}}{\partial{s}})^2+( \frac{\partial y}{\partial{s}})^2+(\frac{\partial{z}}{\partial {s}})^2}}\right]=0\,\,\,\, \frac{\partial}{\partial{s}}\left[ \frac{\frac{ \partial{z}}{\partial{s}}}{\sqrt{(\frac{ \partial{x}}{\partial{s}})^2+( \frac{\partial y}{\partial{s}})^2+(\frac{\partial{z}}{\partial {s}})^2}}\right]=0, which are the Euler equations for this problem. Are these steps similar to yours?
Edit: P.S. If you hit the quote button under a post you can see what was typed to produce the post.