Calculate Change in Velocity of Flatcar When Man Runs Opposite Direction

AI Thread Summary
The discussion centers on calculating the change in velocity of a flatcar when a man runs in the opposite direction. The man weighs 746 N and runs at 4.46 m/s relative to the flatcar, which initially moves at 16.8 m/s. The conservation of momentum equation is applied, but the user struggles with the calculations, leading to an incorrect change in velocity of 1.109 m/s instead of the expected 0.888 m/s. A key point raised is that the flatcar's speed changes once the man starts running, affecting the calculations. The discussion emphasizes the importance of correctly applying momentum principles to solve the problem accurately.
DavidAp
Messages
44
Reaction score
0
A man (weighing 746 N) stands on a long railroad flatcar (weighing 3000 N) as it rolls at 16.8 m/s in the positive direction of an x axis, with negligible friction. Then the man runs along the flatcar in the negative x direction at 4.46 m/s relative to the flatcar. What is the resulting increase in the speed of the flatcar?

Answer 0.888 m/s

Relevant Equations

m1u1 + m2u2 = m1v1 + m2v2
F = ma

In my attempt I saw that I would probably have to work with the equation m1u1 + m2u2 = m1v1 + m2v2 since I was asked to find the difference in velocities. Knowing that i solved for the masses of each object.
Man (Object 1)
F = 746 N
m = 746/9.8 = 76.12 kg

Flatcar (Object 2)
F = 3000 N
m = 3000/9.8 = 306.12 kg

After that I rearranged the conservation of momentum equation to fit the problem stated above. Since, in the beginning, they can be treated as one object the equation is,
u(m1 + m2) = m1(u-v1) + m2v2
I also noted that the velocity of the man was relative to the flatcar so I took the difference of the two velocities and assigned it to the man. After having this I solved for v2 and plugged in the knowns.
v2 = [u(m1 + m2) - m1(u-v1)]/m2
v2 = [16.8(76.12 + 306.12) - 76.12(16.8 - 4.46)]/306.12
v2 = 17.909 m/s

However, when I go and calculate the difference I get... well, something that is not the answer!
Δv = vf - vi = 17.909 - 16.8 = 1.109 m/s.

What did I do wrong? Did I not understand what the question was asking of me?
Thank you for taking the time to read and review my question.
 
Last edited:
Physics news on Phys.org


DavidAp said:
A man (weighing 746 N) stands on a long railroad flatcar (weighing 3000 N) as it rolls at 16.8 m/s in the positive direction of an x axis, with negligible friction. Then the man runs along the flatcar in the negative x direction at 4.46 m/s relative to the flatcar. What is the resulting increase in the speed of the flatcar?

Answer 0.888 m/s

Relevant Equations

m1u1 + m2u2 = m1v1 + m2v2
F = ma

In my attempt I saw that I would probably have to work with the equation m1u1 + m2u2 = m1v1 + m2v2 since I was asked to find the difference in velocities. Knowing that i solved for the masses of each object.
Man (Object 1)
F = 746 N
m = 746/9.8 = 76.12 kg

Flatcar (Object 2)
F = 3000 N
m = 3000/9.8 = 306.12 kg

After that I rearranged the conservation of momentum equation to fit the problem stated above. Since, in the beginning, they can be treated as one object the equation is,
u(m1 + m2) = m1(u-v1) + m2v2
I also noted that the velocity of the man was relative to the flatcar so I took the difference of the two velocities and assigned it to the man. After having this I solved for v2 and plugged in the knowns.
v2 = [u(m1 + m2) - m1(u-v1)]/m2
v2 = [16.8(76.12 + 306.12) - 76.12(16.8 - 4.46)]/306.12
v2 = 17.909 m/s

However, when I go and calculate the difference I get... well, something that is not the answer!
Δv = vf - vi = 17.909 - 16.8 = 1.109 m/s.

What did I do wrong? Did I not understand what the question was asking of me?
Thank you for taking the time to read and review my question.

You are on the right track but the red part is not quite correct. Remember that once the man starts moving, the flatcar is no longer going at 16.8 m/s. How does that change your equation?
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top