MHB How Do You Calculate the Dimensions of Two Equal-Area Rectangular Tables?

  • Thread starter Thread starter ladybutterz
  • Start date Start date
AI Thread Summary
Two rectangular tables are equal in area, with the first table's length being one and a half times its width (x), and the second table's length being three times its width (y) minus seven meters. A relationship between x and y can be derived using the area formula, leading to the equation: (1.5x) * x = (3y - 7) * y. When substituting y with x + 1, the values of x and y can be calculated. The discussion emphasizes the importance of showing attempted work for better assistance. Understanding the relationships and calculations is crucial for solving the problem effectively.
ladybutterz
Messages
4
Reaction score
0
Two rectangular tables are equal in area. The length of the first plot is on and a half times its width. The length of the second plot is seven (7) metre less than three times its width.

a) Denoting the width of the first plot by x meters and the width of the second plot by y meters, derive a relationship between x and y.

b) If y=x+1, calculate the values of x an y
 
Mathematics news on Phys.org
Can you show us what you have tried? Our helpers are better able to help if we can see exactly where you are stuck and what you have done. :D
 
MarkFL said:
Can you show us what you have tried? Our helpers are better able to help if we can see exactly where you are stuck and what you have done. :D

thats the problem i really don't understand it i really don't know where to start mathematics is a little difficult for me at times
 
Okay, let's look at what we are given:

Two rectangular tables are equal in area. The length of the first plot is one and a half times its width. The length of the second plot is seven (7) meters less than three times its width.

a) Denoting the width of the first plot by x meters and the width of the second plot by y meters, derive a relationship between x and y.

b) If y=x+1, calculate the values of x and y

For a rectangle, we know:

Area = Width times Length

For the first plot we are told:

The length of the first plot is one and a half times its width.

We are told to denote the width of the first plot by $x$. If the length is one and a half times the width, then how may we express the length of this first plot in terms of the width $x$?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top