Calculate limit using taylor series

Hernaner28
Messages
261
Reaction score
0

Homework Statement



Calculate: $$ \displaystyle \underset{x\to 0}{\mathop{\lim }}\,\frac{1-\cos \left( 1-\cos x \right)}{{{x}^{4}}}$$

Homework Equations


The Attempt at a Solution



Using Taylor series I have:

$$ \displaystyle f'\left( x \right)=\sin \left( 1-\cos x \right)\sin x$$

$$\displaystyle f'\left( 0 \right)=0$$

but as you can see, now it turns very tedious to continue differentiating. Do I have to keep differentiating until I get something? Or is there any quicker way to compute this?

Thanks
 
Physics news on Phys.org
There is. All you need to use is the Taylor series for cos(x). Also remember that since you're taking limit of x->0, you only need to carry with you the terms of the lowest non-trivial order.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top