Calculate Poynting Vector for Given Fields

LocationX
Messages
141
Reaction score
0
I am asked to calculate the pointing vector for the following fields:

\vec{B}=k^2 \frac{e^{ikr}}{r} \left( 1+\frac{i}{kr} \right) \hat{r} \times \vec{p_{\omega}}

\vec{E}=\frac{i}{k} (\vec{\nabla} e^{ikr}) \times \left( \frac{k^2}{r} \left(1+\frac{i}{kr} \left) \hat{r} \times \vec{p_{\omega}} \left) + \frac{i}{k} e^{ikr} \vec{\nabla} \times \left( \frac{k^2}{r} \left( i +\frac{i}{kr} \right) \hat{r} \times \vec{p_{\omega}} \right)

We know that:

\vec{S} = \frac{c}{4 \pi} Re(\vec{E}) \times Re(\vec{B})

We know that:

I can figure out Re(\vec{B}) assuming that P_omega points in the z direction:

Re(\vec{B})=k^2 p_{\omega} \frac{e^{ikr}}{r} sin \theta \hat{\phi}

since the imaginary term in B vanishes when taking the real part.

I am not sure how to calculate the real part of E, any thoughts would be appreciated.
 
Physics news on Phys.org
Why do you want to assume a particular direction for P_omega? If I remember correctly, if you play your cross-products right, you should get an expected result ...

You're forgetting the imaginary part of e^ikr. And this imaginary part will multiply the imaginary part of the other factor in B and result in another real contribution.
 
turin said:
Why do you want to assume a particular direction for P_omega? If I remember correctly, if you play your cross-products right, you should get an expected result ...

You're forgetting the imaginary part of e^ikr. And this imaginary part will multiply the imaginary part of the other factor in B and result in another real contribution.

we assume a particular direction for P_omega so that r x p_omega will give the sin(theta) term

I am having trouble with finding the real part of E because I'm not sure how to find the real parts when imaginary terms are being crossed with real terms, any ideas?
 
LocationX said:
... I'm not sure how to find the real parts when imaginary terms are being crossed with real terms, any ideas?
Re x Re = Re.
Im x I am = (-)Re.
Re x I am = Im.
Im x Re = Im.

You may also use i = e^ipi/2, and add phases to keep the expressions in polar form. In principle, both of these should be possible; however, choosing which way is more convenient comes with experience. Try both, and you will start to develop an intuition for it.

EDIT: Oh, wait, your expression for S is different than what I'm used to. I use Re(ExB*), or actually Re(ExH*). Sorry for the confusion. Anyway, you can't have Re(something) = something x e^ikr.
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top