Calculate the eigenfunctions for a spin half particle

borndisaster
Messages
2
Reaction score
0

Homework Statement


Spin can be represented by matrices. For example, a spin half particle can be described by the following Pauli spin matrices
s_x = \frac{\hbar} {2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , s_y = \frac{\hbar} {2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} , s_z = \frac{\hbar} {2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}

Calculate the corresponding eigenfunctions which we will denote as ɑ- and β-eigenfunctions corresponding to spin 1/2 particles. Further show that sj can be determined by the commutation of the other two matrices sn and sm , n,m≠j.

Homework Equations

The Attempt at a Solution


I have calculated the eigenvalues (first section of the question) of all three matrices to be ±ħ/2

I think the diagonal matrix sz has eigenfunctions |α> = (1; 0) and |β> = (0; 1)
From that I found the eigenfunctions of sx and sx to be
|x+> = |α> + |β> & |x-> = -|α> + |β> and
|y+> = -i|α> + |β> & |y-> = i|α> + |β> respectively

But I'm not entirely sure I'm correct...
 
Physics news on Phys.org
borndisaster said:
From that I found the eigenfunctions of sx and sx to be
|x+> = |α> + |β> & |x-> = -|α> + |β> and
|y+> = -i|α> + |β> & |y-> = i|α> + |β> respectively
Apart from normalization, these are correct.
 
Thanks @DrClaude

Any ideas as to how I show the commutation part of the question?
 
borndisaster said:
Any ideas as to how I show the commutation part of the question?
Calculate the commutator for each pair of operators and see what you get.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top