Calculate the probability that a measure on S_y yields h/2

QFT25
Messages
24
Reaction score
3

Homework Statement


. Suppose an electron is in the spin state (a,B) If sy is measured, what is the probability of the result h/2?

Homework Equations


Eigenvectors of the pauli matrix for y are (1,i)/Sqrt[2] (1,-i)/Sqrt[2] and if you are given a wave function of the sort a | +> +b |-> then the probability of getting state | +> is a^2/(a^2+b^2)

The Attempt at a Solution



I wrote out (a,B) as a linear combination of the of the two eigenvectors for the pauli matrix and got that the probability of finding the electron with spin h bar/2 to be (|a-ib|^2)/2. I just want to check with all of you if that is right. [/B]
 
Physics news on Phys.org
Doesn't look right to me. I assume you're just being sloppy and are using b and B to be the same variable.

Please show the calculations you used to arrive at your answer.
 
Certainly (a,B)=(x/Sqrt[2])(1,i)+(y/Sqrt[2])(1,-i). I solved for x and y on Mathematica and got x=(a/Sqrt[2] - iB/Sqrt[2]) and for y= a/Sqrt[2]+iB/Sqrt[2]. I then assuming a^2+B^2=1 I just took the mod square of x and got (|a-i*B|^2)/2 to be my answer. Did I do something wrong?
 
Nope, my mistake. Your answer is correct.

Because you already worked out ##\lvert +_y \rangle = \frac{1}{\sqrt{2}}(\lvert + \rangle + i\lvert - \rangle)##, an easier way to arrive at the same result is to calculate the amplitude ##\lvert \langle +_y \vert (a,b) \rangle \rvert^2##.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top