Calculate the spectrum of a linear operator

KennethK
Messages
1
Reaction score
0
<mod note: moved to homework>

Calculate the spectrum of the linear operator ##T## on ##B(\ell^1)##.
$$T(x_1,x_2,x_3,\dots)=(\sum_{n=2}^\infty x_n, x_1, x_2, x_3, \dots)$$I think the way to do it is to find the point spectrums of ##T## and its adjoint ##T^*##. But I don't know how to calculate them.

Some progress:

Let ##T(x_n)=\lambda (x_n)##. Then we have ##x_n=\lambda^{-n+1}x_1## for ##n \geq 2## and ##x_1=\frac{\sum_{n=2}^\infty x_n}{\lambda}##. Then
$$x_1=\frac{\sum_{n=2}^\infty x_n}{\lambda}=\frac{\sum_{n=2}^\infty \lambda^{-n+1}x_1}{\lambda}=\sum_{n=2}^\infty \lambda^{-n}x_1$$
Therefore, ##(1-\sum_{n=2}^\infty \lambda^{-n})x_1=0##.

Hence, ##\sum_{n=2}^\infty \lambda^{-n}=1##. Then we can solve for ##\lambda## to get the point spectrum of ##T##
 
Last edited:
Physics news on Phys.org
KennethK said:
<mod note: moved to homework>

Calculate the spectrum of the linear operator ##T## on ##B(\ell^1)##.
$$T(x_1,x_2,x_3,\dots)=(\sum_{n=2}^\infty x_n, x_1, x_2, x_3, \dots)$$I think the way to do it is to find the point spectrums of ##T## and its adjoint ##T^*##. But I don't know how to calculate them.

Some progress:

Let ##T(x_n)=\lambda (x_n)##. Then we have ##x_n=\lambda^{-n+1}x_1## for ##n \geq 2## and ##x_1=\frac{\sum_{n=2}^\infty x_n}{\lambda}##. Then
$$x_1=\frac{\sum_{n=2}^\infty x_n}{\lambda}=\frac{\sum_{n=2}^\infty \lambda^{-n+1}x_1}{\lambda}=\sum_{n=2}^\infty \lambda^{-n}x_1$$
Therefore, ##(1-\sum_{n=2}^\infty \lambda^{-n})x_1=0##.

Hence, ##\sum_{n=2}^\infty \lambda^{-n}=1##. Then we can solve for ##\lambda## to get the point spectrum of ##T##
If ##|1/\lambda|<1## then this sum would converge to ## \frac {2}{1- \lambda} ##
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top