Calculating Beta Function for Scalar QCD Theory

abrata
Messages
1
Reaction score
0
Hi all,

I am currently trying to calculate the beta function for scalar QCD theory (one loop for general su(n)).

I therefore need to calculate the Feynman rules in order to apply them to the one loop diagrams. Unfortunately I am getting very confused with what the Lagrangian for scalar QCD should be. If anyone knows of some clear examples of this Lagrangian and possibly the derivation of the corresponding Feynman rules and diagrams I would be very appreciated.

Many thanks
Abrata
 
Physics news on Phys.org
First start with the Lagrangian for a scalar field with an internal SU(N) symmetry:

(\partial_\mu \phi^a)^\dagger (\partial^\mu \phi^a) - m^2 \phi^{a \dagger} \phi^a - \frac{\lambda}{4}(\phi^{a\dagger} \phi^a)^2

Then replace the partial derivatives with covariant derivatives:

(D_\mu \phi^a)^\dagger (D^\mu \phi^a) - m^2 \phi^{a \dagger} \phi^a - \frac{\lambda}{4}(\phi^{a\dagger} \phi^a)^2

where ##D_\mu \phi^a = \partial_\mu \phi^a - i g T^{a b} \phi^b##. Add in the gauge field Lagrangian and you have the Lagrangian for scalar QCD.

Srednicki's textbook has some chapters on scalar electrodynamics, which might help you.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top