Calculating Break-Even Point of Muon-Catalyzed Fusion

  • Thread starter Thread starter xinlan
  • Start date Start date
  • Tags Tags
    Point
AI Thread Summary
The discussion focuses on calculating the break-even point for muon-catalyzed fusion, where the energy output must equal the energy input. The rest energy of a muon is 106 MeV, and the energy produced per reaction is 17.6 MeV. It was initially calculated that 6 reactions are needed to reach break-even, but feedback indicated that more energy output is desired. The correct calculation reveals that approximately 6.022 reactions are necessary, highlighting the importance of significant figures in the answer. The conversation reflects a blend of confusion and clarification regarding the calculation process.
xinlan
Messages
61
Reaction score
0

Homework Statement



When discussing attempts to make any type of fusion into a workable power source, an important concept is the "break-even" point. The break-even point is reached when the fusion process generates as much energy as was initially put in (i.e., the energy output equals the energy input). The rest energy of a muon is 106 MeV. If this is the only energy input necessary to initiate muon-catalyzed fusion, how many reactions must a muon catalyze to attain the break-even point?


Homework Equations





The Attempt at a Solution



from the previous question, I got the energy per reaction is 17.6 MeV
so, the number of reactions needed = 106 / 17.6 = 6 reactions
but the feedback says that "This is very close to releasing the same amount of energy as was input, but we want more energy than was input."
I'm totally confused..

please help me..
 
Physics news on Phys.org
I think they want you to round up.
 
the real answer is 6.022,
I already rounded up to 6..
 
xinlan said:
the real answer is 6.022,
I already rounded up to 6..

No, you rounded down. ;)
 
oh my.. thank you so much to Phlogistonian.. :)
 
Based on your answer, I guess they just wanted more significant figures. We didn't use these computer things when I was in school. We just used books, pencil, and paper. :)
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top