Work: OK i re-did the problem this time taking a different approach...
\itshape\vec{p}=\int^{\pi}_{0}\int^{2\pi}_{0}\vec{r}\sigma\:d\vec{a}
\itshape \sigma=kcos\:\theta\:,\:d\vec{a}=r^{2}sin\:\theta\:d\theta\:d\phi\:\hat{r}\:,\:k=constant
so...
\itshape \vec{p}=\int^{\pi}_{0}\int^{2\pi}_{0}r^{3}k(cos^{2}\:\theta\:sin\:\theta\:sin\:\phi\:\hat{x}\:+\:sin^{2}\:\theta\:cos\:\theta\:cos\:\phi\:\hat{y}\:+\:cos^{2}\:\theta\:sin\:\theta\:\hat{z})\:d\theta\:\:d\phi
so when...
\itshape R\geq\:r\;\Rightarrow\;\vec{p}=\frac{4}{3}\pi r^{3}k\:\hat{z}
and when...
\itshape r\geq\:R\;\Rightarrow\;\vec{p}=\frac{4}{3}\pi R^{3}k\:\hat{z}
and finally...
\itshape \hat{r}\bullet\vec{p}=cos\:\theta\:\hat{z}\bullet\frac{4}{3}\pi r(or\:R)^{3}k\:\hat{z}=\frac{4}{3}\pi r(or\:R)^{3}k\:cos\:\theta\:
so when...
\itshaper R\geq\:r\;\Rightarrow\;V_{dip}(r,\theta)=\frac{kR^{3}}{3\epsilon r^{2}}\:cos\:\theta
and when...
\itshape r\geq\:R\;\Rightarrow\;V_{dip}(r,\theta)=\frac{kr}{3\epsilon}\:cos\:\theta
but what disturbs me is i thought i was supposed to be finding an approximate amount of V... and that was the exact answer, did i go wrong somewhere and just get really lucky giving me the exact amount, or am i right... and if I am right what does using a higher multipole change?