chris1969 said:
How are the velocities [of] distant objects calculated from a redshift? I understand the basic principle, that faster objects have longer wavelengths, but I'm not sure about the formula which links the two.
The wikipedia page has some formula for redshift, but the cosmological formula doesn't seem to have a term in velocity.
Many thanks in advance
Chris
For small local velocities a handy rule of thumb is simply that a Doppler shift of 1/1000 corresponds to radial (towards or away) speed of c/1000.
That is, about 300 km per second.
We distinguish between small DOPPLER shifts caused by small local motions, and COSMOLOGICAL REDSHIFTS caused by the expansion of the universe's geometry---the distance expansion rates---the rates we see large scale distances increasing without anybody actually getting anywhere.
Hubble law distance expansion rates are a different story from Doppler. You should probably get familiar with the convenient online calculators. For example, google "wright calculator" and put in a redshift, like 3, and press calculate.
It will give you a distance. Unfortunately it does not give a distance expansion rate, but you can calculate that yourself using Hubble law, if you want.
If you are interested in expansion rates, a handy shortcut is to use an online calculator with more features like where it says "...ocalc.2010.htm" in my signature. That one gives you the distance expansion rate too, as well as the distance itself.
Put in 3 for the redshift and it will tell you that the current recession rate is some multiple of the speed of light.
I just checked. The rate it gives is 1.53 c. About 53% faster than the speed of light.
Hubble law distance expansion rates should really not be called "velocities". It confuses people because it makes them think that geometry expansion is like ordinary motion (where you get somewhere).
In geometry expansion nobody gets anywhere---distances between everybody just get larger. Typically at rates faster than the speed of light. (The recession rate is proportional to distance and most objects we observe are far away enough that the distances to them are expanding faster than c.)