Calculating Effective Focal Length | Mirror Equation Help - 19mm Answer

  • Thread starter Thread starter radiofruit
  • Start date Start date
  • Tags Tags
    Mirror
AI Thread Summary
The discussion centers on calculating the effective focal length of the eye's lens using the mirror equation. The user initially struggles with unit conversion, mistakenly using 40 cm instead of 400 mm for the object distance. Clarification is provided that the distance from the retina to the lens (20 mm) is the image distance, while the object distance is indeed 400 mm. The correct application of the formula 1/f = 1/do + 1/di leads to the answer of 19 mm, as stated in the book. The conversation highlights the challenges faced by students in understanding physics concepts, particularly in a difficult learning environment.
radiofruit
Messages
3
Reaction score
0
Mirror equation help! please urgent!

Homework Statement



The distance from the lens of someone's eye to the retina is 20.0 mm. if the image of a book held 40.0 cm is in front of the eye in sharp focus, what is the effective focal length of the lense.
the back of the book says the answer is 19 mm.

thanks for your help everyone!

Homework Equations


1/f = 1/ do + 1/ di



The Attempt at a Solution

 
Physics news on Phys.org


radiofruit said:

Homework Statement



The distance from the lens of someone's eye to the retina is 20.0 mm. if the image of a book held 40.0 cm is in front of the eye in sharp focus, what is the effective focal length of the lense.
the back of the book says the answer is 19 mm.

thanks for your help everyone!

Homework Equations


1/f = 1/ do + 1/ di



The Attempt at a Solution

Just plug in the values.

Don't forget that 40 cm = 400 mm
 


Gahh! that's why it didn't work.

I forgot to convert Units.

Ahhh I'm a silly physics 11 student.

Thanks for your help!

Hmm does the distance from the retina to the lense (20 mm ) count as the Do ?
 


radiofruit said:
Gahh! that's why it didn't work.

I forgot to convert Units.

Ahhh I'm a silly physics 11 student.

Thanks for your help!

Hmm does the distance from the retina to the lense (20 mm ) count as the Do ?

You are welcome:smile:

No, 20 mm is Di, the distance to the image (which is on the retina). 400 mm is the object distance
 


Thanks!

So glad I join this message board.

My physics 11 teacher is horrendous, our class average is in the 50's.

I'm managing a 'B', but it's been difficult.
 


radiofruit said:
Thanks!

So glad I join this message board.

My physics 11 teacher is horrendous, our class average is in the 50's.

I'm managing a 'B', but it's been difficult.

You are welcome. Sorry to hear about your situation! I wish you the best luck!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top